>y

L.

' CUNDS 1555
@ Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell Laboratories and is not for publication (see GEI 13.9-3)

Title: On Making the UNIX™ File System Crash Resistant Date: May 27, 1980

Other Keywords: recovery T™: 80-3168-8
unattended operation

-

Author(s) Location Extension Charging Case: 49408-120.

Alan L. Glasser HO 1E-335 6569 Filing Case: 40324-2
ABSTRACT

Changes have been made to the UNIX kernel that make its file system crash resistant. A
system running this modified kernel has a higher degree of availability than a standard UNIX
system. Only a very few routines in the kernel required modification; only 30 lines of code
were changed. In addition to the kernel changes, a8 saivage program was written to recover disk
space after a crash. These changes do not include any optimizations; some possible
optimizations are presented. With worst case test programs (i.c., programs that are write
intensive), this implementation is four times slower than the standard system. The
modifications described here do not affect read performance. For a more realistic read/write
application, the cost of using this implementation may well be less than a factor of two.

IMx-E0-5168-8

Pages Text: 4 Other: 0 Total: 4
: o , SCHELLEEMAN (CARCLE L "
No. Figures: 0 No. Tables: 0 No. Refs.: 6 MEZF 126 06,/04,00
SUEJECTI MAICE UNCS

E-1932-U (3-76) SEE REVERSE SIDE FOR DISisupu srumn L N

SELL TILEZPMCRE LABOBATORIBS, INC.

COMPLETE MEMCRANDUN 30
CORBISPONDENCE FILES

OFFICIAL PILZ COPY
21US CNE COPY FOi

EaCH ASCITIONAL FILING
CASE ALYIRENCED

DATE FIIZ COPY
{70BM E-1120)

10 BREPEREINCE COPILS

ALMGESEN,JOEN
AbATEMASLCC, TERESS &
ADATE,JOSEPH
1ITCNESON,2 J
ALBAGLI.V 2
ALDZRTS,BARBARL &
ALKONS, FAESEZLICK
AAB1LE.GECEGE &
ANDZASON,C 2
ANDREES,R J
ANDREVS,¥ J

AZCHEZ ,RUSSELL E,J2
ARMAN, THOXAS D
ABMSTRONG,D B
ARNCLD, THOMAS P

CONPLITE MENORANZUM 70

BLUN, MA RION
BOCKUS,ROBERT J
BOZAM,ZARL ¥
HCGART, THCMAS G
BOHNING,J & .
BOIVIL, RICHARD H
BOLINSKI,RANCY ¥ DEVIIR
BONACHEL,8 N
BCSTON, RBONALD £
BOUBNE, STEPHEN R
BOWYER,L BAY
BOYCZ.K J

BOYCE,¥ M
B&ADFORD, EDWARD &
BRADLEY,M 4ELEN
BRANDT, RICHARD B
BRAUN,d R
BRAUN,DAYID A
SBAUN,E J
BREITHAUPT, S &
BRENSKI ,EDVIN P
BRITT,MARRLN D
BROSS ,JEPFREY D
BROWNR, ELLINGTCN 1
BROWN,JAMES M
BROWN,S 2
BUBNEZZ,ROSZ M

DISThi.J2L0NH
(B2P2R Gii 13.9-3)

COMPLETL MidONANDUM TO

COHEN,AMSUN §
COMEN,DAVID
CCOLEMAN,C L
COLEiIAid, ELANE
COLLICWIT,s B
COMMRADL ,GLAALDINE
COo0K,T g
COPrP,LAVID B
COREY,D)
COSTELLO,FETER £
CONELL,ARLlIYs O
COYNE,DENNIS €
CRACOVIALZ ¥
CRANE,E P
CRISTOFOk, ZUGENE
CRONE,HABGARET N
CSASZAk, MARYANN
CSURI.JULN ©
BALE,O B

DALRYMPLE, FREDEKICK L
DAVIDSUN,CHAKLES LailS
DAVIDSON,kGBEAT P
DZ GRAAF,D &

BT JAGZR,D S

DE LUG(SL,d G

BT NIGRIS,IRNEST G
DEZAR,JEYFR2Y S

COMPLETE MEMOEANDUM TO

FASCIANO,V
PAVIN,D L

PEDLR,Jd
PELNOZRG,HENRY 3
FEINER, b

IESNG, PRANK B
FIRGEZR,ERIC J
FINK,BZRNICE A
F1SCBER,HERRERT B
FI5HER,V B
PISHMAN,DANIEL B
ZILTON,NICHALZL J
PLANDRENA,R
FLEAING ,JAKES 2
FOLEY,CG

FORG,.K T

FORMICA ,STEPHEN -3

FOr,J €
FAANKLIN,C N
r3ASE2,A G
FREDERICKS,) 3
FREEMAN,X G
FEEEMAN,MARTIN
FAEEMAR,R DOR

IN<B0-I1560-3

/ \
COMPLETE MEMORANDUN % '

hAASE,JORN L, 3BD
BACHENBUBG,Y
HAHN,JAMES 2,32
BAIGHT,.R €
bBAJSCH,H F,32
HALLER,N N
HALLIN,THOMAS G
HALL,ARDAZE By02
BALL,HWILLIAN G
HALPIN,T

HAMES, ROSALYM
HAMILIOR,1INDA L
HAMN,DEBOBAN ARN
HANSER,GUEN J
HANSEN,R C
HAR3ON, 38UCE L
HABKNESS,CAROL J
HARRISUN,JAMZS PEANCIS
BARRIS,BREMDA L
HARRLIG,WARD 2
BARTMANR,) B

HARTOIN, ROSER?T R
BARVEI,D B2
>BAYDEN,DORALD 2,92
HAYES ,MARILYR B
HAYWARD,HER2ITITA N
BEATER, RCBHERT J

-

ASPIN,LEE J BUERORS , THOMAS 3 DERNY AICHAZL S PAITZ,THOMAS P REDRICK,ZLLEN L
42718,H » BUTLETT,DARRELL L DICKMAH, BERNARD X 2U0ST,H BONNELL HEPFROR, V GORDCR,JR
ARVIDSCK,® P BUZZARD,C ALAN DIMMICK,JANES © 7,C HEIDER, BRUCE B
BACCASH,JEMINL M 2Y0R2CK, 5OBEBRT 5 DIVAKAJUNI,R S GALLANT,2 J BELS,B W
BACH,MAURICE J CAMPBELL,JEARY B DIION,DAVID) GANGAUWARZ,DERNICE C BELLER,J ALLEM
BAXZR ,DONK CANADAY,RUDD B DOBLMAIER,A B GARST,BLAINE, 32 HELLER.K A
BALERSCH, CHRISTINE ¥ CAERAN,JOEN H DOCK,G A, GATES.G ¥ BENIG, FRANCES B -
BABNHARDT,KARL 2 CA2k,DAVID C Dorz,s ¥ GEORGEN,MICHAEL B HERBST, ROBERT T
5ABOFSKY, ALLEZN CARTEA,DOMALD B DOLOTIA,T A GELPNER,JIMES 3 >RERGENHAN,C B
EARON, ROBERT ¥ CZAMAK,I 2 DOMPIZREE,J A GZaARd,d HERAAR, KENNETE M
BAZB,DAYID L CHAPPEE,N 2 DORNE il ,MARGARET M GERRISE,d N HERNDGN,JCHN 2
BA2R,K I, ° cHazD T DONOHOL,D € GZILING,? ? BESSILGBATE, MARY &
BARTON,X 2 . C#ANG ,JO~NET DONCHUZ, 3 P,3RD GZYNZT,ROSEMARY #285,8 &
BAUZ2, BARBARLT CHANG,$~d DOUGHERZY,E G128, RENNETE 2 HILLYARD,E B .
BAUZR.B € GEA0,C DOUDEK, DOUGLAS € GloSON,H T,JR HOFHANR, L X -
BA0UZB, ROLFGANG 7 CRAPPELL,S G DOND, PATEICE G GILKEZY,THONAS J BOLINAN,JANES P 7~
BAVIZR,BICEARD J CHARLES,JOYCE DRUMMCAD & E GILLOR,ALZI € HOLTZMAN,JACK X ‘
BAYER,D L CHELLIS,ALICIA I DUBMNAR,M 2 GIMMELLI,BALPH ¢ HCOKZR,J ¥
BZADNCNT,LELAND 2 CHEN, BOBERT DUCHARAE, kObLKT LAWRENCE GLNGRICH,PATEICIA § HCOVER,ERNA 8
BLCKETZ,J T CHIN,STEPHEM DUNLOR, ALFRED & GLASSIR,ALAE L HO,DANIEL X Y
BINISCH,JEAN CHEN,T L DUORAK,? S GLAZZE , STANLEY BO,DON ¢
BLEGTSON,B F,JR CHERRY, LORINDA L oVYZR,? 3 GOry,CAROLYN B 3O, TIZN-LIN
EERKCWITZI,PAUL B CHIARG,T € EDMUNDS,T W GOGUEN,M B HSU, 720
BIENHARDZ, AICHARD € C4CDROK ¥ X EZITELBACH,SAVID L GCuD, REONDA L HUBER, DEBCRAE J
BI2NOSKE,BZVZRLY G CBONG ,PEEE ZLDREDGE,GARY 2 GOCDMAR,JESSE D HVANG, HENRY
BERRYMAR,R D CHOW,V P TLMENDORTY,C B GOADON,MOSAE B INAGMA,C P
BIREN,IZMA B CHO, YUN=CHUNG ERIC TLI,T € GEANAM,R L IPPOLITIO D
BISCHCEE,3 BAREY CHRISTENSON,DERNIS 1 EPLEY ,AOBERT V GRAVENAN,R P IRVINE, N M
BITTRICH,MAXY I CICHINSKI,STEVER ZRICAEON, VERLYN b GREENSAIM,HCWARD J ISERMAR,N 2
BLAEUZ.D €Icoi,.J P ZARICHILLLO,PHILIP M GRESHAM,J ? 18MAR, MARSHALL A
BLAZIZR,S D CIRILLD,C ZRUIR, 9 GRIPPITH,KIMBERLEY AME IULIANG, VINCEZNT P
BLEIER,JOSEF CLIFPCRD,COURTENATY B BYIRSON,Z K GRIPPITH,X 3 JAASMA,E G
BLIRR,S € CLINE,LAURZL M I FABRICIUS,WAYNE N GROG5, ARTHUR G JABLONSKI ,GRAZTNS €
BLOSSER, PATAICK 2 CLINZ,TERRY W FACTOR, AGAERT M GUIDI,PIER V JACKOWSKI,D J
L XX
¢ NAMED BY AUTHOR > CITED AS REFIRENCEZ < REIQUESTED BY READER (NARES NIZTHOUT PREPIX 681 fofal
WERE SELECTED USING THE AUTHOZ®S SUBJECT CR ORGAKIZATIONAL SPECIPICATICH A5 GIVEN S2LO%) J
~}
uacu" s':c:"c‘:‘mlQOOOD.Q...O.DD.......-.....-..I..O.....O0.00.......-’-...I...I'OIOQ....'....."‘.....I.’..lI0.0'...... LY .
COMPLETEZ MEMO TO:
3121=50p 3122-30p 316-30P 3169-T4 323-30p J2e=3Ur 3392-80P 3891-80p 363-s0p 360802
S220-5U2 932302 933-30p 9362-302
COCSPS « COMPUTZR YILZ SISTENS
UNOSY = UKIX OPEBATING SYSTDY: GENERAL OB SURVEY DOCUMENTS
COvZEk SHEZZ 2C:
}
BO CCHRESPONDENCE FILES TH-80-3160-8 Y
HO 1127 TOTAL PAGES .

T0 GET 4 CCMPLEZIT CCPIt

‘e BEZ SURE YOUR COERLCT ADDRESS 1S GIVEN ON TH: OTHER S8ICE.

BLEABE SEiD A CONPLETE

» POLD TillS SHEE1 IN HALY VITH THIS SIDEZ OUT AND STAPLE.

» CIRCLE THE ADDAESS A7 MIGHI.
o INDICATZ WHETHEZ) MICROTICHE OR PAPER IS DESIRED.

BEE HO ENVELCPE.

{) MICROFICHL cm
T0 JHZ AUDEESS SHOWN OR THL OTHIR SIDE.

() papzs corr

Bell Laboratories

fubject: Onm Makihg the UNIX™ File System Crash Resistant date: May 27, 1980
Charge Case 49408-120
File Case 40324-2 from: Alan L. Glasser
HO 3168
1E-335 x6569
T™M 80-3168-8
MEMORANDUM FOR FILE

1. INTRODUCTION

The UNIX time sharing system was developed to provide computer scientists with a
comfortable and effective computing facility. It has been used in many other arenas, notably
for operations support systems and as a programmer’s workbench. Unfortunately, UNIX was
not designed for the extremely high availability or unattended operation requirements of many
Bell System applications. In particular, the UNIX file system implementation is optimized for
performance, rather than crash resistance. This memorandum describes a small set of changes

_ to the UNIX kernel that yield a UNIX system that can be halted at any time and its file systems
subsequently mounted read-only without any intervening processing; aiso, full read-write
capabilities are possible once a (non-inieractive, non-heuristic) salvage program is run. We call
such a file system crash resistant.

2. NORMAL UNIX FILE SYSTEM RECOVERY

The following quote, from [1], is a succinct description of normal UNIX file system crash
recovery:

Repairing disks. The first rule to keep in mind is that an addled disk shouid be treated
gently; it shouldn’t be mounted unless necessary, and if it is very valuable yet in quite bad
shape, perhaps it should be dumped before trying surgery on it. This is an area where
experience and informed courage count for much.

While the UNIX/TS file system check program (fsck) [2] is far more thorough than its
predecessors, it is beuristic, and must often process highly contradictory data. One should nor,
in general, allow fsck to make whatever changes in the data it deems necessary. Thus, an
intelligent operator is required. (Fsck is far superior to other file system check programs in that
less skill is required to use it successfully.)

The inconsistencies in a file system after a crash result from data being written to the disk in an
order different from the original logical I/O sequence [3]. There are two causes for this re-
ordering: disk drivers usually perform head movement optimizations that change the sequence
in which data is written, and the UNIX buffer cache tends to change the order in which data is
presented to the disk driver.*

3. AN IMPLEMENTATION OF A CRASH RESISTANT FILE SYSTEM
3.1 Kerael Overview

Were it true that “‘the software is careful to perform 1/0 in the correct (logical) order™ [3], all
thaet would be necessary to make the UNIX file system crash resistant is to make all writing
synchronous. Unfortunately, this is 2 necessary, but not sufficient, change.

The philosophy followed in making further changes was to guarantee that the disk contains
consistent inodes, indirect blocks, and data blocks at all times. We allow the free list to be
inconsistent, and therefore require that the free list always be reconstructed on a re-boot (see
“The Salvage Program'’, below). Also, to allow reasonable performance, the contents of the
disk are allowed to lag the true contents of the file system. The result is that the completion of
a wrile system call does not guarantee that the data can be recovered if the system crashes. A
sync system call is necessary to assure that the data is indeed recoverable. (If performance is
not as imporiant as timeliness, an implied sync can easily be added to the write system call.)
Finally, these modifications include no optimizations. As the changes required intimate
knowledge of the kernel, and as proof of crash resistance seemed difficuit to obtain, simplicity

.. was substituted for efficiency.

3.2 Kerael Detalls

This section describes the details of the additional changes; familiarity with the.system source
code (PWB 1.0) would be helpful to the reader.

Inspection of the source code revealed that during the creation of a new file (or a link to an
existing file), the directory containing the file could point to an erroneous inode. This problem
is avoided by adding calis to the iupdar routine, which writes an inode from the in-core table to
the disk, in the maknode and link routines.

When creating a2 new file (or link), a8 sync system call is necessary to guarantee that the new file
is present on the disk (this is analogous to the write situation described above). As file and link
creation is not as frequent as writing, providing such assurance is relatively inexpensive. This
guarantee is effected by adding a call to iupdar in the wdir routine.

Truncating a file, eitber viz 2 crear or unlink system call, provides an opportunity for very
-serious file system corruption. If the system should crash during the truncation of a file, after
the crash one might discover that the file had not been truncated at all, that another file
claimed blocks owned by the original file (so called dups), and that the free list also claimed
blocks owned by the original file (so called dups in free). This problem is avoided by rewriting
the itrunc routine to make 8 copy of the inode, set the size and block pointers to zero, and write
this inode back to the disk. After this, the blocks originally claimed by this file are freed via
the copy of the inode.

The change to maknode (the added call to aupdar) introduced a subtle bug. The mknod routine
(i.c., the mknod system call interface) calls maknode and subseguently modifies the inode (it
sets the device number for special files). At this point the inode entry is freed. As neither the
modified nor accessed bits are set (iupdar clears them), the inode is not re-written. The net
effect is that the mknod system call would only make special files with device number zero.
Resetting the modified bit in the inode to force a re-write is not acceptable because a crash

® When a process writes a block of dats, the system copics that data to a system bufier, queues that buffer on the
disk driver work queue, and returns control to the process. Alsc, when a partial block is written, the buffer is
mercly marked as “‘write before using”’, and tbe pbysical writing deferred until the buffer is nceded for other data.
These techniques allow substantial overiap of CPU and disk activity, and significantly reduce the amount of physical
1/0 that would be otberwise required.

before the re-write leaves an erroneous inode on the disk. This bug was fixed by adding an
extra argument (the device number) to maknode and changing all calls to maknode to include
the additional argument.

3.3 The Salvage Program

As was stated earlier, these modifications require that, after a crash, the free list of each file
system be rebuilt prior to using it. When the system runs in dupiex mode** the root file
system is mounted read-only. Thus the consistency of the root is guaranteed. As part of
system initialization, a file system salvage process is spawned for each read/write file system
that is normally mounted. The salvage program recovers all unused biocks and unreferenced
inodes, adjusts link counts, builds a free list, and performs some consistency checks. The
program is a heavily modified version of the old check program. The consistency checks are
provided to help detect latent bugs in the file system code or hardware failures.

4. PERFORMANCE

These modifications yield a write through buffer cache, rather than the standard write back buffer
cache, one effect of which is to increase the amount of disk traffic in the system. Also, the fact
that writing is synchronous rather than asynchronous will tend to result in shorter than normal
disk queues and a larger than normal amount of disk head movement. These two factors make
obvious the fact that such a crash resistant file system is necessarily slower than the standard
file system: performance was sacrificed for reliability.

To obtain a rough measure of the cost, a worst case test program was written that spawns a
specified number of children that each create and write a file. With 10 children, each writing
files of 9 blocks (a 9 block file is the smallest *““large™ file) repeatedly, this system is four times
slower (real time) than the standard system. Also, synchronous writing makes processes wait,
thereby reducing the amount of CPU/disk overlap. This results in 10% more CPU idle time
that is available for other (bopefully CPU-bound) processes.

While a factor of four seems exorbitant, there are optimizations to be made. One simple, and
probably significant, optimization would be to not write newly allocated (bence, empty) blocks.
With proper measurement it should be possible to find other optimizations (e.g., use so-called
“inverted” file systems so that pairs of file systems share a common region of the disk for their
separate ilists—almost half the traffic of typical PWB file systems is to the ilist).

The test program generates atypical disk traffic as it never reads anmy files (hence the
characterization of the program as *‘worst case™). The ratio of disk reads to writes for a typical
PWB/UNIX system is about four. The ratio for database applications is often higher. The
modifications described here do not affect read performance. For any given application that
requires crash resistance, the cost of using this implementation may well be less than a factor of
two.

5. CONCLUSIONS

Perhaps the most significant aspect of this work is that it has shown that a UNIX file system can
be made crash resistant. :

The system bas been tested and the source code examined in walk-throughs. Testing was
difficult (the system was deliberately stopped while various test programs were running, and

* The crash resistant file system changes are a small portion of the total cbanges made to the system. Numerous
other changes were made to the system to support a dual-processor, multiple shared disk controlier PDP-11/70
system designed for high availability and unattended operation [4, 5, 6].

then the file system was checked for consistency). Two svenues are available to further
improve the reliability of this system: first, the softwhre should be soaked for a substantial
period of time, and second, an attempt should be made to prove the correctness of the
modifications.

The required skill level for & craftsperson maintaining such a system is lower than that required
for maintaining e standard UNIX system.

The ease of making these changes, and the minute number of changes required—less than 30
lines, out of the approximately 9000 total lines, of the kernel were changed—is anotber tribute
to the versatility of UNIX.

REFERENCES

m
[2]

3]
iz
1s]

(6]

PWB/UNIX User's Manual Release 2.0. Crash(8). June 1979.

T. J. Kowalski. FSCK — The UNIX/TS File System Check Program. July 1, 1979. TM
79-3624-4.

K. Thompson. UNIX Implementation. The Bell System Technical Journal 87, 6 (July-
August 1978, Part 2), pp. 1931-46.

D. F. Hayden and D. M. Ungar. File Machine Recovery Plan - Revision 0. March 1,
1978. MF 78-3124-7.

C. B. Hergenhan, V. Triolo, and D. M. Ungar. File Machine Startup. August 1, 1978.
MF 78-3111-18. .

V. Triclo. UNACS Disk Subsystem. June 25, 1979. MF 79-3111-17.

HO-3168-ALG-alg Alan L. Glasser

