/S 42

Bell Laboratories Cover Sheet for Technical Memorandum

The information contained herein is for the use of employees of Bell
Laboratories and is not for publication (see GEI 13.9-3)

Title: An Interactive Screen Editor Date: June 16, 1980
for UNIX
TM: 80-5343-2
Other Keywords:

Author(s) Location Extension Charging Case: 49358-003
Warren Montgomery IH 6E-314 2494 Filing Case: 40308-300
ABSTRACT

High speed data communication and display screen termi-
nals make possible a fundamentally different mode of
entering and editing text to a computer system. An
interactive screen editor allows a user to enter and
edit files, and to see the effects of the editing
immediately. :

A good screen editor can improve productivity in
several ways. The need for paper listings, and thus
the expense and delay in dealing with them, is greatly
reduced with the availability of a screen editor. The
editor can provide a customized environment for partic-
ular tasks, such as editing program source or word pro-
cessing, which can relieve the user of the mechanical
parts of the task (such as maintaining proper indenta-
tion). The immediate feedback provided reduces mis-
takes, and speeds up their detection. A simple set of
editing commands can be used effectively by relatively
unskilled users, because of the feedback obtained by
seeing the effects of editing.

This memorandum describes an interactive screen editor
for UNIX known as EMACS. The editor is patterned after
a very popular screen editor originally developed at
M.I.T. It was developed by the author as a tool for
his own work and is currently used by members of
department 5343. The editor provides a friendly edit-
ing environment with the advantages outlined above,
while running in the small address space provided to
the UNIX user on the PDP 11/70. This memorandum
describes the commands and editing environment of
EMACS, and some experience with its use.

Pages Text: Other: Total:

No. Figures: No. Tables: No. Refs.:

E-1032-U(3-76)SEE REVERSE SIDE FOR DISTRIBUTION LIST

Copy to

All Supervision Lab 534
All Members Department 5343
All Department Heads Lab 364
S. A. Bauman

C. Christensen

W. E. Danielson

J. D. De Treville

J. R. Fleming

J. A. Githens

R. D. Gordon

H. M. Jackson II

R. K. Kanodia

L. E. McMahon

D. M. Mcilroy

E. Nussbaum

R. A. Reed

D. Ritchie

R. F. Rosin

J. M. Scanlon

K. Thompson

R. A. Thompson

S.

CONTENTS

INTRODUCTION.........00.0000.Doo.00Q..I......O....O..O...

EDITING WITH EMACS.cccececvscsosscscssssscsnssocasscssnscnsans
The CRAractel SeL.ccceccscsscccrrsososscscsccccccssscae
Arguments and ParameterS.cccceccececscccccccccccccces
Simple cursor movement COMMANAS.ececccccccsscsacanse
Inserting “0dd’ CharacCterSecccscccccrccccccscssscsccs
Text Deleting COMMANAS..ceccccscssccncesccssssnsnnse
File and buffer COmMANAS.ccccccecssccccscacscscccnncse
Miscelaneous COMMANGAS.ccesereccscescccscvsscscscnscns
Macro Commands (versionl 3.0)cccececccccscccvecscnss
HOABS.eceeeoaccosacssnscanscasssasosssncacsccsncsscnsncse
Getting StarteA.ccccccccecscscsrcescccccccccsccncnns
Helpful NiNtSeecceccccceccccccccnsscseccscscssccsvccncnee
Limitations of the editOreccecccecccccsccccccccncoce
Problems with EMACS.........-.....................t

L] * L] [] . [] (]
FHRREPREROOIO0O A WNR
Wik o

NNONNNDNMNNDNNNDNND

3

DIRED....-.-.-...--.o-o..oo.-oo.ooooooo..oooooooo.o..oo-o

mERIENcE...‘..O.l.........‘ﬁ'.00..l.'l'.o.ol..’..'.—..'.
401 Feature Use‘.00..................Q.O....Q.C'.Q.QOQI

4-2 Performance..........-.......-...o-o-..........;..., .

CONCLUSIONS..O..C..0..’....QI....Q.-l......Q.O.Q...O...Q..

APPENDIX m—— EHACS COmmand Summary-,.........--...-.-..-......

[ot

WO OU DD

Bell Laboratories

subject: An Interactive Screen Editor date: June 16, 1980
for UNIX
Case: 49358-003 from: Warren Montgomery
File: 40309-300 IH 5343
6E-314 xX2494
80~-5343-2

TM: 80-5343-2

MEMORANDUM FOR FILE

1. INTRODUCTION

Text editing is the most common task of many computer users. The
creation and modification of programs, data bases, and memoranda
occupies much of the time that a user spends with a computer sys-
tem. The ability to edit programs and recompile them was one of
the primary reasons for the success of early time-sharing systems
over batch processing systems.

Many of the text editing tools now in use are based on the edi-
tors for the early timesharing systems. These editors were
developed for an environment that included mostly low-speed (110
baud) printing terminals, and expensive computer systems that
were not. prepared to interact with the user on a character at a
time basis. In such a environment, it was appropriate to minim-
ize the amount of output produced by the editor, and to allow the
user to specify a lot of changes to be made by a single editor
"command®”. Editors such as the standard UNIX editor (ed) are
ideal for this environment.

In recent years, printing terminals have been repaced by display
terminals capable of handling high data rates in many applica-
tions. The cost of computing has steadily dropped. The text
editing tools made available to users must evolve to take advan-
tage of these changes. With a high-speed display terminal, minim-
izing output is no longer appropriate. Instead, the display can
be used to provide feedback for the user on the results of edit-
ing. The lower c¢ost of computing, and better hardware support
for terminals, make character at a time interaction with the com-
puting system feasible. The EMACS editor described in this
report is one attempt to take advantage of these effects in order
to provide the user with a simple and powerful editing environ-
ment.

EMACS is a screen editor that can be used to build or to edit
files using a display terminal, such as an ADM3A or SOROC. The

-2 -

user interface to this editor is gquite simple. The user is
presented with a display of the contents of a portion of the
buffer being edited. This display indicates exactly what is in
the area being displayed, including any non-printing characters.
The contents of the buffer being edited can be read from or writ-
ten to a UNIX file. Characters typed by the user will be
inserted into the buffer (and reflected in the display) at the
point indicated by the terminal’s cursor. This is the primary
mechanism for entering and modifying text.

Control characters and escape sequences can be used to perform
other editing functions, such as moving the cursor to a different
position in the buffer, deleting text, replacing text, or search-
ing. Thus there is only one mode of interpretation of characters
typed to EMACS, in which either text to be entered or commands
can be entered. This simple interface relieves the user of the
need to remember what mode he is in, and prevents the disastrous
mistakes that can occur when text to be inserted is evaluated as
an editor command. A simple mechanism is provided to allow a
user to insert control and escape characters when needed.

Although there is a rich vocabulary of commands available,
including commands that perform functions tailored to a particu-
lar application (such as indenting a C program), the most common
way in which EMACS is used to edit is simply to position the cur-
sor over the area to bpe changed, and enter the changes. The
immediate feedback provided by the visual display appears to be
very important to the user.

This editor was written by the author as an aide to his other
work, and patterned after the EMACS editor written for the PDP-10
systems at the M.I.T. Laboratory for Computer Science. The
interface to the user closely follows that provided by the M.I.T.
version, because the author was familiar with that version. The
implementation of EMACS for UNIX described in this report was
done by the author, and is entirely different from that used at
M.I.T. The author was not familiar with the implementation tech-
niques used in the M.I.T. version, only with the language in
which EMACS was implemented.

The author and his organization are not supporting EMACS. The
author is, however, willing to distribute copies of the software
for use within Bell Laboratories, and is interested in comments
regarding features or problems with EMACS. The author will
repair problems as time allows, but makes no guarantees ¢to fix
problems promptly.

The remainder of this report contains a user’s manual for the
EMACS editor, and a discussion of the exXperience that we have had
with EMACS in our department. EMACS continues to evolve to pro-
vide more commands and remove implementation restrictions. The
users manual here describes EMACS version 3.0, which was in use
in late May, 1980.

-3 -

The display screen contains a window of approximately 20 1lines
into the buffer being edited. The terminal cursor is positioned
at the point where the editor cursor is in the buffer. Each line
of the buffer (delimited by a newline character) begins at the
beginning of a display line. A 1line that exceeds the screen
width is continued on the next screen line. Whenever a line must
be continued on the next screen line an exclamation mark (!) is
displayed in the last collumn of the first screen line. 1If the
editor is in line number (lnumb) mode, then a 1line number is
printed at the beginning of each line in the buffer.

Printable characters are displayed normally, while tabs are
displayed as white space up to the next screen collumn that is a
multiple of eight. Each non-printing control character is
displayed as a two character sequence of ‘A7 followed by the con-
trol character + 100 octal. This causes a control-x to display
as ‘AX’. This mapping produces a reasonable display for most of
the control characters. There are several other non-printing
characters for which the character displayed is not obvious.
Rubout displays as A?. The "us" character (037) displays as A*_.-
The "rs" character (036) displays as AA. The "gs" character
(035) displays as A]. The "fs" character (034) displays as A\,
and the escape character (033) displays as A[. A character which
has the high order bit set (0200 octal) is displayed with an M-
in front of it. This bit is normally not set in ASCII charac-
ters.

In addition to the display buffer, several lines of the screen
are used for status information and for displaying parameters
entered into EMACS, such a file name. One of these 1lines known
as the status 1line contains the editor name, editor version,
buffer number and name, and file name. Some of the more recently
introduced commands described in this document indicate the ver-
sion in which they were introduced, so that you can determine
whether or not a particular command is in the version that you
are running. If the buffer has not been modified since the file
was read or written, an ‘=’ will be displayed between the buffer
and file names. Otherwise, a “>“ will appear.

The lines below the status line are used for the time of day
display (if time mode is on), and for emacs to prompt for parame-
ters for commands. Some commands cause the buffer display to be
erased in order to display other information in place of the
buffer. The word "Continue?" will be displayed at the bottom of
the screen when this happens. Typing “y‘, 7 7, or return will
bring back the buffer display. Typing ‘n’ may allow you to re
execute the command producing the display.

Figure 1 shows a typical screen during a EMACS session. The
buffer "Main", number O, is being used to edit a program test.c.
The buffer has been modified since the last write to the file
test.c.

R

-4 -

Figure 1 EMACS screen Display

1 #include <stdio.h>

2 /= EMACS_MODES: c, !fill, comcol=43 =/
3

4

5 /% This is a c program =/

6

7 main()

8

9 int i;

10 char c;

11

12 for (i = 031 > 0; i++) {

13 printf("i = sa\n",i); /=x print i =/
14 }

15 }

16

EMACS 2.8 (0) Main > test.c

2. EDITING WITH EMACS

As noted above, when the buffer is displayed by EMACS, one can
enter characters into the buffer being edited simply by typing
them on the keyboard. Editing functions use control characters
or escape sequences. This section provides a brief description
of the basic editing commands available, and the way in which
they are invoked.

2.1 The Character Set

EMACS operates on characters from an alphabet of 256 different
characters. These include the 128 ASCII characters that can be
entered from a terminal, and 128 "Meta® characters. A Meta char-
acter is entered Dby preceding it with an escape (ESC key). 1In
this document, and in characters displayed by EMACS, control
characters are represented as a character preceded by “A“, and
Meta characters are represented as a character preceded by “M-‘.
Thus the character ‘M-a‘’ (Meta a) can be entered by hitting the
ESC key, followed by the a key. The character 74X’ is the char-
acter obtained by hitting the control key and the x key.

Each character that is typed into EMACS is interpreted as a com-
mand. All of the ordinary printing characters insert themselves
into the buffer being edited at the point defined by the cursor.
Thus in order to enter text, simply type it. The control and
meta characters are used for editing commands that manipulate the
text in the buffer, or move the cursor, or both.

2.2 Arguments and Parameters .

All commands, including the printing characters, take a numeric
argument that has some effect on their interpretation. The
default argument given to a command for which no argument is
specified is 1. To specify some other argument to a command, you
can enter escape, followed by a sequence of digits, and then the
command. Numbers starting with a 0 are interpreted as octal,
while numbers starting with any other digit are decimal. A
second way of specifying the argument is to precede the command
by one or more AU (control-u) characters. Each AU multiplies the
value of the argument by 4.

For most commands, the effect of the argument is to multiply the
number of times that the command is applied. Thus the sequence
AUAUX inserts 16 X“s into the buffer at the current location.
The sequence ESC13AN moves forward 13 lines in the buffer.

In addition to the numeric argument given to all commands, some
commands will prompt the user for additional character string
parameters. The commands that take parameters, and the method of
entering parameters are described in the section on file and
buffer commands.

2.3 8Simple cursor movement commands

There are many ways to move the cursor around in the buffer
without modifying the text in the buffer. Most of these use
their argument to specify how many times the movement is to Dbe
repeated. These commands include:

AR Move forward one character. On reaching the end of a
line, the cursor moves to the first position of the
next line.

AB Move backward one character. On reaching the beginning
of a line, the cursor moves to the end of the previous
line.

AN Move down one line. The cursor is moved to the same

character position in the next higher number line in
the buffer. Note that if the buffer contains tab or
control characters, the same character position in the
lines in the buffer may display at different points in
the screen.

AP Move up one line. The cursor is moved to the same
character position in the next lower number line number
in the buffer.

AR Move to the beginning of the current 1line of the
buffer. Note that both this and the following command
work on the current line in the buffer, which may be

AE
M=<

M=->

M-b

M-g

AY

H-v

-6_
displayed on two or more screen lines if it is too long
to fit on one screen line.
Move to the end of the current line.
Move the cursor to the beginning of the buffer.
Move the cursor to the end of the buffer.

Move the cursor forward one word. Note that words are
delimited by non- alphabetic or non-numeric characters.

Move the cursor backward one word.

Move the cursor to the line number specified by the
argument given to the command.

Move to next page. The cursor is moved forward so that
a new window, beginning with the first 1line not
currently displayed, will be displayed.

Move to previous page.

2.4 Inserting ‘odd’ characters

Because EMACS uses control and escape characters for commands,
you cannot directly insert them into the buffer by typing them.
The following three commands are useful for the occasional need
to get such characters into a buffer.

AQ

¥-q

M-\

Quote the next character(s). AQ accepts one or more
characters (the number of characters specified by its
argument) from the terminal and inserts them "blindly"
into the buffer without interpretation. Only the new-
line (line feed) character is interpreted. EMACS
strips the parity bit from all characters read from the
terminal, so all characters inserted this way have 2zero
parity.

Quote characters and turn on parity Dbit. This acts
just like AQ, however it turns on the parity bit in the
character before inserting. Characters inserted this
way will be displayed as meta characters by EMACS.

Convert the argument to a character. This command
takes its argument and converts it to a character and
inserts it. This provides an easy way to convert from
octal or decimal to ASCII, and is occasionally useful
for creating "funny" character strings.

2.5 Text Deleting commands

Several commands are available to delete text from the buffer.
All of these commands operate on text near the current cursor

position.

A?

AH

AD

AK

AW

M-A?

The deletion commands are:

(rubout) Delete the character before the cursor. The
character before the cursor usually the last character
typed. A rubout deletes it.

(backspace) Backspace is a synonym for rubout, also
deleting the previous character.

Delete the character under the cursor. If a newline is
deleted (rubout at the beginning of the line or AD at
the end), lines are joined.

" Delete to the end of this line. If invoked with an

argument of 1, AK deletes the remaining text on this
line (if any). If no text follows the cursor on the
current 1line, AK deletes the newline. 1If AK is given
an argument greater than 1, it deletes multiple 1lines
(including the newlines).

(Meta space) The command Meta space or A@ (control @)
places an invisible mark on the current cursor posi-
tion. This mark can be used in subsequent editing.
EMACS maintains 12 marks, one for each buffer. If an
argument is specified to this or to other commands that
use marks, it is used to select which mark to use. If
no argument is given, the buffer number is used to
select a mark. Thus ordinarily, EMACS acts is if there
is one mark in each buffer, however you can use as many
as 12 marks in a single buffer by explicitly specifying
which mark to use. Each mark is simply a position in
the buffer (line number and character within the line.)
Thus if you add or delete text in front of a position
where a mark was placed, the mark may not remain on the
same character, but stays on the same position.

The command ‘AW’ deletes the text between the current
cursor position and the mark. This is a convenient way
to delete a well defined block of text. If an argument
is specified, it is used to select the mark number The
mark can be either before or after the cursor position
and achieve the same effect.

(Meta rubout). This command deletes the previous word
of text. The definition of a word is the same as for
M-f and M-b

This command deletes the next word of text.

2.6 File and buffer Commands

Most of the file accessing commands are invoked through the #X
command. AX is a prefix for several useful commands, most of
which involve file or buffer access. These commands are invoked
by a AX followed by a second character.

Many of these commands prompt for parameters, such as a buffer
name or file name. With all of these commands, you can enter
text, just like you enter it into a Dbuffer. Rubout (or back-
space) deletes the last character entered and @ or AK deletes the
entire entry and lets you start over again. AY enters the
current file name (sometimes useful), and AX enters the current
line from the buffer. AG aborts the command without doing any-
thing. Escape, newline or return terminate the parameter being
entered.

AXAR Read file. EMACS will prompt for a file name, which
you enter as described above. When the file name for
AXAR has been entered, EMACS will read the specified
file into the buffer. If you invoke AXAR with an argu-
ment of one (the default argument), it clears the
buffer before reading. If you invoke AXAR with an
argument that is not 1 (i.e. AUAXAR) it inserts the
file into the buffer at the current cursor position.
If the cursor is in the middle of a line, reading will
be much slower, so it is best to open up a blank line
when reading a file into the middle of a buffer, and
then delete any unwanted lines after the file is read.

AXAY Write file. Prompting for file name is as above.

AXAS Save file. This writes out the buffer to the last file
read or written if the file has been modified.

AXAB Change buffer. EMACS allows up to 12 named buffers to
be edited concurrently. /AXAB’ prompts for the name
of a buffer, and makes that buffer the current buffer.
If the buffer name "..." is entered, a new, empty
buffer with a unique name is created. If a null buffer
name is given (just type newline when asked for buffer
name) a list of the active buffers is displayed. TYp~-
ing ‘n’ in response will cause EMACS to ask for the
buffer name again, while typing anything else will
return you to the buffer display. All commands that
ask for a buffer name will also accept a buffer number.
The buffer number is displayed in parentheses next to
the buffer name on the status line.

AXAF Find file. This command prompts for a file name and
switches to a buffer that holds the specified file. If
the specified file has been read into a buffer, the
effect of find file is to change to that buffer. If no

e

AXAX

AXAT

AXAC

AXAT

-9 -

buffer holds the specified file, the effect of find
file is to create a new buffer and read the specified
file into it. Find file is a convenient way to switch
between editing several files.

Exchange the cursor position and the mark. An argument
can be specified to indicate the mark to exchange with.

Re-direct input. This command directs EMACS to take
input from a file. The file is assumed to contain
EMACS commands, and can be created by editing with
EMACS, using AQ to enter control and escape characters.
One use for this command is to perform a series of com-
mands on the current buffer, or to set up a standard
set of modes. Note that 4if the file contains only
printable ASCII text, tabs, and newlines, AXAI will
effectively read the file into the buffer at the
current location. Note, however, that this is very
slow, and much better done with AXAR.

(or AZ) Quit Emacs. If any buffers have been modified
since the last write, EMACS will ask whether or not to
write out each such buffer before exiting. EMACS will
not ask whether or not to save an empty buffer or a
buffer with a null file name.

Send text to another buffer. This command sends the
text between the mark and the current cursor position
in the current buffer to another buffer. EMACS prompts
for the name of the other buffer, and the text is
inserted into that buffer at the current cursor posi-
tion for that buffer. The current buffer remains
unchanged. If an argument is given, it selects the
mark to use.

2.7 Miscelaneous commands

The above set of commands are sufficient to do a substantial
amount of editing quite easily. Here are more commands for spe-
cial situations.

AG

AX2

Abort. Typing AG at any point that emacs is asking for
input (except AQ and M-q) will abort the current com-
mand. This applies at any step (specifying arguments,
typing escape, entering parameters that emacs asks for,
etc.). This is a convenient way of aborting anything
that you are not sure that you want to complete (or how
you got there).

Enter Two window mode. In two window mode, the screen
is split in half vertically, and each half displays a
different buffer. One window is current, as indicated
by the cursor position and the file name on the status

e’

AX1

AXAQ

AY

M-Y

M-p

- 10 -

line, and one window is dormant, and continues to
display the text last put there. Two window mode is a
good way to keep a display of something like an include
file containing definitions handy while editing another
file. AX2 will prompt for the name of the buffer to
display in the second window, and move to that window.
Once in two window mode, the buffer displayed in the
current window can be changed by any of the buffer
switching commands. You can have two windows on one
buffer, but only one is "active", so that changes made
are only reflected in the active window. Text in the
dormant window is wiped out by any command that re-
writes the screen with something other than the buffer,
such as M-7?.

Enter one vwindow mode. Return td one window mode from
two window mode

Switch windows. Make the dormant window current and
the current window dormant.

Insert last killed text. All text that is deleted 1is
saved in a "kill stack". The kill stack can hold the
last 8 deletions. There is also a limit on the total
amount of text that can be held in the kill stack, but
you are unlikely to encounter it. AY retrieves the
most recently deleted text. The most frequent use of
this command is in moving text around. The procedure
is: kill the text to be moved, move the cursor to where
you want it, and enter AY. Another use of AY is to
undo an unwanted deletion. AY leaves the mark (the one
corresponding to the buffer number) at the beginning of
the inserted text, and puts the cursor at the end.
Both AY and M-Y work much faster if the cursor is on a
blank line. Thus if you are moving or retrieving lots
of text, it is best to open up a blank line to do the
retrieve to, and then delete any unwanted text when
done.

Replace last retrieved text. This command kills the
text between the cursor and the mark corresponding to
the buffer number, and replaces it with the next to
last item on the kill stack. This command only really
makes sense when it is issued immediately after AY,
where it can be used to change the text that has just
been retrieved. By entering AY followed by some number
of M-Y’s, any text in the kill stack can be retrieved.

Pickup the region of text. This command picks up the
text between the current position and the mark and puts
it in the kill stack, without changing the buffer.
This is useful for duplicating blocks of text in the
buffer. An argument can be used to specify which mark

AQ

AT

AS

AR

M-R

M=-AS

- 11 -

to use

Open up a line. This command creates one or more empty
lines at the current cursor position. This is useful
for inserting text in the middle of the Dbuffer, while
minimizing the amount of screen refresh needed.

Transpose the next two characters.

Incremental search. EMACS will prompt for a search
string and as the search string is entered, begin
searching for the next occurrence. At any point, the
cursor sits at the beginning of the texXt that was
found, and the search string is displayed at the bottom
of the screen. Rubout can be used to delete the last
character in the search string. If no match is found,
the terminal bell rings. A message indicating the
failure is typed as the prompt. Entering AS in place
of another search character causes the search to
proceed to the next occurrence of the search string.
Entering AR cause the search to proceed backwards.
Entering either AR or AS with a null search string
causes the last search string (from the last search) to
be retrieved. Entering AG quits the search and returns
the cursor to its previous position. Entering ESC
stops the search, leaving the cursor where the search
took it. Entering any control character stops the
search, and then interprets the command specified Dby
the control character.

Reverse search --, like above, only starts backward.

Query replace. You will be prompted for a From string
and a To string. Each can be edited as the filenames
above. In the To string, the ‘&‘ character can be used
to designate replacement with the From string. To get
a real ‘&’, prefix it with a “\“. To get a real ~“\’,
prefix it with another “\“. EMACS then searches for
the from string and positions the cursor in front of
it. Typing 7 “ (space) or ‘y” causes that from string
to be replaced by the to string and moves to the next
occurrence of the from string. Typing rubout or “n‘
moves to the next occurrence of the search string.
Typing ‘AG” stops the replacing. Typing ‘r‘ causes
EMACS to replace all of the subsequent occurrences of
the search string without asking. Query replace stops
when the from string is no longer matched. “?7 prints
a summary of the options

Regular Expression Search (Version 2.1) This will
prompt for a reqular expression to search for. You can
edit the expression like editing filenames. The syntax
is standard UNIX regular expression syntax. The search

M=-AR

M-/

M=-AM

AC

- 12 -

finds the next occurrence of the search expression,
wrapping around at the end of buffer. Searching for
expressions that span line boundaries will not work.

Regular expression query replace (Version 2.1) This is
just 1like query replace, except that a regular expres-
sion is allowed in the search string.

Begin comment. This command begins a C program comment
by moving to the appropriate collumn and putting a /=
in the buffer. The next newline will close the comment
and automatically append a =/

Unix escape. Prompts for and executes a unix command
line. If this command is given an argument (i.e. AUM-
1), it passes the contents of the current buffer to the
command as standard input.

Unix escape. This works just like the above, except
that it also traps all of the standard output from the
command executed and saves it in a buffer called .exec
as well as sending it to the terminal. If you don‘t
give M-$ an argument, the buffer .exec is cleared
first, while if an argument is given (i.e. AUM-$) the
output is appended to whatever was in Dbuffer .exec
before. This is useful for saving a copy of the error
messages produced by a C compilation of a file being
edited, for example. The file name of the .exec¢ buffer
is set to the command line that produced it. This can
be useful if you want to re-execute the same command,
as you can make .exec your current buffer, enter M-$,
and enter AY followed by newline as the command line.
AY gets the 0ld command line back, and newline will
execute it. .

Mail. This command takes the current buffer as unix
mail, and sends it. The buffer must contain at least
cne line starting TO: , which specifies the recipients
of the mail. Each recipient is delimited by a space.
Any number of recipients may be 1listed in a single
line, however to improve readability, additional TO: or
CC: lines may be used in specifying 1lists of reci-
pients. Any errors encountered by mail are printed.

Underline word. This command underlines the following
word of text. Useful for generating underlined text
for mm. :

Capitalize. This command capitaliZes the letter under
the cursor and moves the cursor forward one position.
Lower case alphabetic characters are converted to upper
case, while other letters are unchanged.

M-?

M-w

AL

M-AL

M- L]

- 13 -

Capitalize word. The letter under the cursor is capi-
talized, and the cursor is moved to the beginning of
the next word.

set terminal type. Prompts for terminal type and sets
the character sequences used to display text to be
appropriate for that terminal. Available terminal types
are soroc, adm, adm31, vt100 (ANSII mode, 132 columns),
vt52 (vt52 or vtl00 in vt52 mode), informer (64x16),
and hp. EMACS uses terminal commands for relative and
absoclute cursor position, clear screen, clear from the
cursor to the end of line, insert and delete lines, and
insert and delete characters. The number of characters
transmitted for re-display will depend on which of
these functions are available. Thus EMACS transmits
fewer characters on an adm-31, which has all of these
functions, than with an adm-3a, which has only cursor
positioning and clear screen. Most terminals fall
between these extremes.

Explain. This command prompts for a character and
prints a brief explanation of what that character does.

Wall Chart. This command puts a listing of all com-
mands (including those prefixed by AX) into the current
buffer. This command is a convenient way of producing
a "wall chart" of the commands. The list is inserted
into the buffer at the current position, so that nor-
mally one would want to execute it in an empty buffer.
The appendix to this report contains a current copy of
the wall chart.

Refresh. refresh the display. Occasionally, some
error may cause the display to become garbled. AL re-
creates it from scratch.

Redisplay top. Redisplay the window with the current
line at the top. This is useful for viewing the lines
that follow the current line. Note that this dJoes not
re-create the entire display, as does AL, so it will
not correct garbling.

Auto Fill Buffer. This command re-adjusts the lines in
the buffer so that each line contains 72 or fewer char-
acters. The adjustment is done like nroff (mm) by mov-
ing words from one line to another. nroff or mm command
lines and blank lines are preserved as is. This com-
mand can be used to improve the way in which an nroff
or mm source file displays, by getting rid of 1long
lines, without affecting the output.

- 14 -~

2.8 Macro Commands (version 3.0)

EMACS provides a facility to allow a user to define his own com-
mands. These "macro commands" provide a way to implement spe-~
cialized editing functions for particular applications. A macro
command is actually a sequence of EMACS editing commands that are
invoked in response to a single character entered from the key-
board. Macros can contain ordinary emacs editing commands, invo-
cations of other macro- commands, or one of the commands described
in this section that are of little use in interactive editing,
but are quite useful in macros.

Because there are a large number of commands related to defining
and using macros, and because these are of limited interest to
most users, macros are documented in a separate manual.

2.9 Modes

EMACS has a variety of modes and other parameters that can be
changed from commands entered in the terminal. The current set-
ting of modes can be displayed by typing AXAM followed Dby a
return. There are three types of modes: on/off modes, integer
modes, and string modes. AXAM displays the names of the on/off
modes that are now on, and the values of the string and integer
modes. The “AXAM’ command can be used to set these parameters.
7AXAM’ will prompt for the name of the mode to set, and if it is
an on/off mode, turn it on if the argument is 1, and off if the
argument is anything else. (Thus mode is set to the value of the
argument. For a string mode, EMACS prompts for the new value.
The modes and types are listed below, along with their default
values. For ON/OFF modes, the default is underlined.

save Auto Save Mode (ON/OFF)
If auto save mode is on, EMACS will automatically
write the current buffer after savetype characters
have been entered since the last save. This mode
reduces the chance of disaster in the event of a
crash, but can be annoying by causing a 1lot of
writing.

savetype Save type ahead (INTEGER=256)
If auto save mode is on, this is the number of
keystrokes between saves.

£ill Auto Fill Mode (9§/OFF)
If this mode is on, emacs will automatically move
to the next line whenever the cursor moves to the
end of the line, breaking the line at a word boun-
dary. This is very useful for entering text, as
no newlines need be entered in the middle of the
text.

fillcol

lnumb

tabstop

comcol

backspace

time

verbose

overwrite

Auto Fill Column (INTEGER=72)
This is the character position beyond which auto
fill mode will cause the line to be broken.

Line Number Mode (ON/OFF)
This mode causes the current line number to
display at the left of each line.

C Mode (ON/OFF)

This mode automatically indents for a C source
file. Each 1line is indented with the number of
tabs in the last non-comment line plus the net
excess { characters over } characters in the last
line. This mode is particularly useful for enter-
ing ¢ program text.

Tabstop (INTEGER=8)

This mode is the number of characters per tab that
are displayed. Displaying a deeply indented ¢ pro-
gram may look much better if tabstop is set to
something smaller than the eight default.

Comment Collumn (INTEGER=40)
This is the collumn in which comments entered via
M-/ begin. '

Backspace Mode (ON/OFF).

Turning on backspace mode causes backspace charac-
ters (AH) to display as moving back one column
rather than as a AH. This is very useful for
viewing runoff output, or manuals, but editing the
resulting text can be a bit tricky, because it is
impossible to tell whether the character under the
cursor is the one being displayed, or one that has
been overprinted, or a backspace.

Time mode (ON/QFF)

When time mode is on, EMACS will display the time
of day below the mode line (the one that says
EMACS and the buffer name). The time is updated
every time a character is read. Using time mode
when entering lots of text is expensive.

Verbose mode (ON/OFF)

When verbose mode is on, EMACS will prompt for
more input when AX, AQ, escape, or AU are entered.
This makes it easier to keep track of where you
are.

overwrite mode (ON/OFF)

In overwrite mode, text entered will overwrite
text already there. Text entered when the cursor
is at the end of a 1line will Dbe inserted as

- 16 -

before. Overwrite mode may be more natural for
some people when making corrections.

nobell No Bell (ON/OFF)
Ordinarily, unexpected conditions, such as errors
or dquitting out of commands, cause the terminal
bell to ring. On some adm3a terminals, This
causes some kind of disaster to occur. Turning on
nobell mode prevents EMACS from ringing the termi-
nal bell.

You can specify the modes to be used while editing a particular
file by putting the string "EMACS_MODES: " somewhere in the first
10 lines of the file. The text on the same 1line following
EMACS MODES: will be taken as names of modes to set on or off. A
mode name preceded by ‘!’ will be set off, while mode names 3Jjust
listed will be set on. If ‘= immediately follows a mode name,
then the characters immediately following the ‘= will be taken
as the value for the mode name. Any text on the line that does
not correspond to a mode name will be ignored. Thus the line:

/= EMACS_MODES: !(fill ¢, comcol=43 =/

in a ¢ source file will set ¢ mode on, fill mode off, and set the
collumn for starting comments to 43. These modes are set when-
ever the file is read, and whenever you switch buffers.

2.10 Getting started

When EMACS is invoked, it must find the terminal type of the ter-
minal that you are using in order to know the appropriate escape
sequences for moving the cursor and clearing parts of the screen.
This is taken from the shell variable TERM. To make it work, you
must set the value of $TERM in your .profile, and export it.

On the IHNSS UNIX system, we have a utility program called ttype
that will print out the type of a terminal that is on a hard
wired port. Thus the lines:

export HOME PATH MAIL LOGNAME LOGTTY TERM INFO
TERM="ttype*

will set the terminal type correctly on the IHNSS UNIX system.
If TERM is set to an unrecognizable type, EMACS will prompt for
terminal type, however the prompting message may come out in a
strange place on the screen due to lack of knowledge about ter-
minal controls. The acceptable terminal types at this time are:
adm (adm3a), adm31, sorec, vtl100, hp, informer. Support for
other terminals could easily be added if needed.

There are two "features" of the adm3a terminals that sometimes
cause trouble in EMACS. One of the internal switches on that
terminal is labeled space/advance. That switch must Dbe in the

-17 -

space position for EMACS to work properly. A second problem is
that many of these terminals are set up to use one of the ™"unde-
fined" pins of the rs=232 interface for some internal diagnostic.
This causes the terminal to go wild every time it receives a bell
character when connected +to a 1200 baud modem (which uses the
same pin for something else). If this happens to you in EMACS,
set nobell mode, which will prevent EMACS from sending bell char-
acters to your terminal. A better and more permanent solution is
to modify the terminal to disconnect this lead, use a cable that
does not carry the undefined signals between the modem and the
terminal, or use a different kind of modem.

once terminal type has been established, EMACS reads the file
.emacs_init in your home directory as a set of start-up commands.
You can put initializations of various modes to your 1liking in
this file. If the file does not exist, it is not read, and you
will get a default setting of modes (simple enough!).

2.11 Helpful hints

This editor is very easy to use, once you know a few of the basic
commands. Learn a few of the basic commands at a time. EMACS
tries to be reasonably efficient about the refreshing of the
screen. Some sequences, however, will cause lots of text to be
redisplayed. While you can-insert anything into the middle of a
buffer by typing it, it is much better to open up some lines
where you want to insert, insert, and then kill unneeded lines.

. Use M-? when in doubt about a command. The explanations are
brief, but should be sufficient to tell you what you want to
know. Like most editors, EMACS maintains a local buffer, so that
changes made do not go into the file until the next write. Type
AXAS reasonably frequently so as to avoid being wiped out by
machine crashes, editor bugs, or other unpredictable events.

Because EMACS tries to avoid unnecessary refreshing of the
screen, it will get confused if characters are sent to your ter-
minal from some other program while running EMACS, such as a
"background® program, oOr by a write command from another user.
If you suspect that the display does not correspond to the buffer
that you are editing, type AL to refresh the screen. After typ-
ing AL, the screen will match the buffer being edited.

2.12 Limitations of the editor

There are some limits that you may encounter:
® Each line can hold at most 512 characters.

e Each buffer can hold a maximum of approximately 15,000
lines.

RN

- 18 -

e You can have at most 12 buffers.

e The kill stack contains the 8 most recent deletions, or a
total of 256K characters.

o Filenames are limited to 128 characters.

2.13 Problems with EMACS

Because EMACS puts your terminal in "raw" mode, there is no way
to transmit a "quit" signal to EMACS if something goes wrong.
{On a hard-wired port, you may have to kill the EMACS process
from another terminal, as there may be no way to send a hang up
signal). If EMACS encounters an error that causes a fault trap
(memory fault, bus error, etc.) EMACS will put your terminal
back in cooked mode before exiting. If EMACS is killed via the
kill command (except kill =-9), it will try to save your buffers
before terminating. The buffers are saved in the files emacsO-
emacsll in your home directory. A message to this effect is
printed, although it is easy to miss.

3. DIRED

The program DIRED (DIRectory EDitor) allows editing of a direc-
tory. DIRED takes an argument which is the name of a directory,
and displays the result of a 1ls -al executed on that directory.
The EMACS commands for cursor movement, search, etc. can be used
to move around in the displayed buffer. * Entering “d”, “4AD’, or
A’ marks the file designated by the current line for deletion,
while entering ‘u’ removes such marks. All files marked for
deletion are displayed with a D in the first column. Doing a
save, write, or exit causes dired to print a list of files to be
deleted, and ask for permission to delete. If yes is entered,
DIRED will delete those files. Doing a read (AXAR) will read
another directory for display without deleting any files.

Another feature of dired is that typing ‘e’ will cause the file
or directory designated by the current line to be edited by DIRED
or EMACS as appropriate. This is a convenient way of exploring
the useful files in some directory. DIRED is a nice way to clean
up a "dirty" directory, because it allows the user to go back and
forth over the contents of a directory, marking files for dele-~
tion. ©

DIRED is not very robust, and can be confused if, for example,
you try to delete directories, edit the filename field in the
display lines, or delete the header line.

- 19 -

4. EXPERIENCE

The author originally wrote EMACS as an aide to his own work of
programming and memorandum composition. EMACS was made available
to other members of the author’s department (5343) and now has a
user community of about 15. The observations in the following
sections come from the author’s experiences and those of the
other users.

4.1 PFeature Use

The most commonly used "feature" of EMACS is simply the ability
to enter text and see the result. The simple cursor movement
commands appear to be much more frequently used than the more
complicated commands, such as those moving forward or backward by
sentences.

The following is a summary of the user reaction to some of the
unique features of EMACS.

Multiple Buffers

The ability to maintain several editing buffers at the same
time is widely used for many purposes. These include exa-
mining several source files while making modifications,
nolding source, compiler output, and program output while
debugging, and holding the output of the spell utility while
scanning a document for misspelled words. The availability
of multiple buffers allows the user to manage several dif-
ferent tasks, such as writing a program, editing a memoran-
dum, and helping a friend 1locate a system problem, con-
currently.

Two Window Mode .

Two window mode is less heavily used than some of the other
features, but appears to be quite useful for a variety of
tasks. These include viewing a buffer containing declara-
tions at the same time that a program is being entered in
the second window, and viewing the output of the spell pro-
gram at the same time that the document is being edited.
The fact that only one of the two displays is actively main-
tained does not seem to be a problem, nor does the limita-
tion of only two display windows. The author has not
received any user comments on these limitations.

Incremental Search

With a high speed terminal, incremental search seems to be
very effective. The ability to quickly move from one
occurrence of a string to the next seems to meet most user’s
needs. With significantly less than 9600 baud communica-
tion, the amount of re-display created by incremental search
becomes bothersome, and the regular expression search is
preferred. The fact that incremental search does not "wrap
around", seems to be a significant problem to many users.

- 20 -

C mode and Fill mode

These two modes provide customized facilities for editing
certain kinds of files. The user reaction to these is
mixed. Some users make extensive use of these, while others
have their own styles for entering memorandum or program
source and 4o not use these modes. They are a very small
part of EMACS, and as such are worthwhile even if they are
not extensively used.

Line Numbers

The display of the line number (lnumb mode) is one aspect of
EMACS that was not taken from the M.I.T. version. This
appears to be extremely useful for use with UNIX, primarily
because of the widespread use of line numbers to indicate
position within a file. Line numbers also serve to provide
the user with some feedback as to what part of the buffer is
currently being displayed.

4.2 Performance

While computer resources are not as expensive as they once vere,
they are far from free. An interactive screen editor such as
EMACS consumes more in computer resources than a conventional
editor. EMACS was designed to be as efficient as possible, some
price must be paid for the benefits gained.

The Processor time consumption of EMACS is comparable to the UNIX
editor for most "commands®, including reading and writing files,
searching, and substitution. The major discrepancy in perfor-
mance comes in entering text. In entering text, EMACS consumes
approximately 2.5 times as much processor time as the UNIX edi-
tor. ’

If we examine how each editor uses its time, we see that almost
all of the time spent by the UNIX editor is spent in the UNIX
operating system reading characters. About two thirds of the
time spent in EMACS is spent reading and writing, while the
remaining thirdé is spent re-creating the display. EMACS uses
almost twice as much UNIX operating system processor time,
because it is re-writing the display after each character is
typed, in addition to reading the characters. In addition, EMACS
spends a significant amount of user processor figuring out how to
most efficiently re-display the screen.

While EMACS does consume more time editing than does the UNIX
editor, the processor time spent editing does not appear to be a
significant problem. Based on the use of EMACS in our depart-
ment, about .01 seconds of PDP 11/70 processor time are consumed
for each character input to EMACS. This is an average over all
users doing many different kinds of editing tasks. There is sub-
stantial variance from one case to another. This rate suggests
that a substantial number of users could be supported by a PDP
11/70. In our department, we typically have around 8 users

-21 -

running EMACS during the afternoon, with no significant com-
plaints about the response that can be attributed to EMACS.

5. CONCLUSIONS

The EMACS editor provides an effective means of using a high-
speed display terminal for text editing. EMACS provides a
variety of unique features that seem to be very uséful in edit-
ing. User reaction indicates that using EMACS has improved their
productivity, however there are no quantitative measurements of
this effect.

EMACS uses more computing resources than the standard UNIX edi-
tor, however the resources utilized do not appear to be a serious
problem. We have not yet experienced any performance problems
attributable to the widespread use of EMACS on the PDP 11/70 used
by our department.

EMACS was written by the author as a tool for his own work, but
is available to anyone desiring a copy. There are no currently
known bugs, however there may be undiscovered problems. The
author is interested in user reaction to EMACS and in reports of
problems, however, the author’s job does not include supporting
EMACS, and thus the author does not promise any prompt response
to suggestions or trouble reports.

IH-5343-WAM-UNIX Warren Montgomery

AZ:

AN

A2
M=AL:
M=AM:
M=AQ:
M=-AR:
M=-AS:
M-
M-!:
M-t
M-t
M=-$:
M~/:
M~-<:
M=->:
M~-?:
H—
M-

- 22 -

APPENDIX -- EMACS Command Summary

sets the mark at the cursor position

moves to the beginning of the line

moves back one character

capitalizes the current character

deletes forward one character

moves to the end of the line

moves forward one character

quits from any command in progress

deletes backward one character

inserts a tab .

opens a new line and moves to the beginning of it if the
next line is non-empty, otherwise down one line

Kills to end of line (with argument, kills multiple lines)
refreshes the screen

opens a new line and moves to the beginning of it if the
next line is non-empty, otherwise down one line

moves down one line

opens up a new line

moves up one line

quotes the next character

starts a reverse search

starts a search-

transposes the next two characters

multiplies the argument by 4

moves to the next page

kills the current region (between cursor and mark)

is a prefix for more single character commands,

type character or ‘=’ for all

restores last killed text

(leaves cursor and mark around it)

exits immediately

Makes the next character a meta character

Causes the last returned result to become the argument
deletes backward one character

Re-displays with current line at top of page

Mails the current buffer

Returns the next input character (in a macro)

Regular expression query replace

Regular expression search

sets the mark at the cursor position

gets and executes a shell command

Auto Fills the whole buffer

Plays the game of Life

Executes a command, saving the output in buffer .exec
starts a comment

moves to top of file

moves to bottom of file

explains the next character

Converts its argument to a character and inserts it
Underlines the next word

M-a:
M-b:
M-c:
M-d:
M-e:
M-f:
M-g:
M-m:
M-p:
M-q:
M-r:
M-s:
M-t:
M=-v:
M=-w:
M-y:

M-z:
M-{:
M-}:

-23 -

Moves to beginning of sentence

moves back one word

capitalizes the next word

deletes the next word

Moves to End of Sentence

moves forward one word

Moves to a specific line (its. argument)

Displays active modes

Puts the current region in the kill buffer w;tnout killing it
Quotes the next character and adds the 0200 bit
starts query replace

Gives EMACS statistics

Prompts for terminal type

moves back one page

Puts a wall chart of explanations in the buffer
Replaces the last restore() with the next text in
the kill buffer.

kills emacs with a core dump (for debugging)
Enters a command sequence (in a macro)

Exits a command sequence (in a macro)

Control-X commands:

AXAB:
AXAC:
AXADs
AXAE:
AXAF:

AXAT:

AXAK:.

AXAL:
AXAM:

AXAQ:
AXAQ:
AXAR:
AXAS:
AXAT:

AXAW:
AXAX:
AX%:e
AX=2
AX1:
AX2:
AX<:
AX>:
AXB:
AXFs
AXA:
AXd:

Changes Buffers (Change to * lists active buffers)
exits gracefully

(after asking whether or not to save the buffer)
Changes the working directory

Calls emacs recursively taking input from the terminal
Edits a file in its own buffer

(if file has been read into a buffer, moves to it)
Re~directs input from a file

Kills a buffer

Loads a file full of macro definitions

Sets mode from argument (prompts for mode name)

and string if necessary

Switches between windows

Returns the character under the cursor (in a macro)
reads a new file

saves the buffer in the current file (if modified)
Prompts for a buffer name and inserts the text between the
cursor and the mark into the named buffer.

writes-a new or old file

exchanges the mark and the cursor

Exchanges the top of the kill stack with another item
Pops the kill stack

Exits two window mode

Enters two window mode

Pushes a string from the tty or macro text into the kill stack
Duplicates an item on the kill stack

Puts the buffer name into the buffer

Puts the file name into the buffer

Enters a "while" loop (in a macro)

Defines macros from the current buffer

AX|:

AX

- 24 -

Begins a conditional execution sequence (in a macro)
Performs arithmetic or logical operations (in a macro)

