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ABSTRACT

This paper presents a brief history of the early development of the Unix
operating system. It concentrates on the evolution of the file system, the
process-control mechanism, and the idea of pipelined commands. Some
attention is paid to sodal conditions during the development of the system.

Introduction

During the past few years, the Unix
operating system has come into wide use,
80 wide that its very name has become a
trademark of Beil Laboratories. Its impor-
tant characteristics have become known to
many people. It has suffered much rewrit-
ing and tinkering since the first publication
describing it in 1974,! but few fundamental
changes. However, Unix was born in 1969
not 1974, and the account of its develop-
ment makes a little-known and perhaps
instructive story. This paper presents a
technical and sodal history of the evolution
of the system.

Origins

For computer scence at Bell Labora-
tories, the pericd 1968-1969 was somewhat
unsettied. The main reason for this was
the slow, though clearly inevitable, with-
drawal of the Labs from the Muitics pro-
ject. To the Labs computing community as
a whole, the problem was the increasing
obviousness of the failure of Multics to
deliver promptly any sort of usable system,
let alone the panacea envisioned earlier.
For much of this time, the Murray Hill
Computer Center was also running a costly
GE 645 machine that inadequately simu-
lated the GE 635. Another shake-up that
occurred during this pericd was the organi-
zational separation of computing services
and computing research:

From the point of view of the group
that was to be most involved in the begin-
nings of Unix (K. Thompson, Ritchie, M.
D. Mdlroy, . F. Ossanna), the decline and
fall of Multics had a directly felt effect. We
were among the last Bell Laboratories hold-
outs actually working on Multics, so we
still felt some sort of stake in its success.
More important, the convenient interactive
computing service that Muitics had prom-
ised to the entire community was in fact
available to our limited group, at first
under the CTSS system used to develop
Multics, and later under Multics itself.
Even though Multics could not then sup-
port many users, it could support us, albeit
at exorbitant cost. We didn't want to lose
the pleasant niche we occupied, because
no similar ones were available; even the
time-sharing service that would later be
offered under GE’s operating system did
not exist. What we wanted to preserve
was not just a good environment in which
to do programming, but a system around
which a fellowship could form. We knew
from experience that the essence of com-
munai computing, as supplied by remote-
access, time-shared machines, is not just to
type programs into a terminal instead of a
keypunch, but to encourage close com-
munication.

Thus, during 1969, we began trying
to find an alternative to Multics. The
search took several forms. Throughout
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1969 we (mainly Ossanna, Thompson,
Ritchie) lobbied intensively for the pur-
chase of a medium-scale machine for which
we promised to write an operating system;
the machines we suggested were the DEC
PDP-10 and the SDS (later Xerox) Sigma 7.
The effort was frustrating, because our pro-
posals were never clearly and finally
turned down, but yet were certainly never
accepted. Several times it seemed we were
very near success. The final blow to this
effort came when we presented an
exquisitely complicated proposal, designed
to minimize financial outlay, that involved
some outright purchase, some third-party
lease, and a plan to turn in a DEC KA-10
processor on the soon-to-be-announced
and more capable KI-10. The proposal was
* rejected, and rumor soon had it that W. O.
Baker (then vice-president of Research) had
reacted to it with the comment ‘Bell
Laboratories just doesn’t do business this
way!

Actually, it is perfectly obvious in
retrospect (and should have been at the
time) that we were asking the Labs to
spend too much money on too few people
with too vague a plan. Moreover, I am
quite sure that at that ime operating sys-
tems were not, for our management, an
attractive area in which to support work.
They were in the process of extricating
themselves not only from an operating sys-
tem development effort that had failed, but
from running the local Computation
Center. Thus it may have seemed that
buying a machine such as we suggested
might lead on the one hand to yet another
Muitics, or on the other, if we produced
something useful, to yet another Comp
Center for them to be responsible for.

Besides the financial agitations that
took place in 1969, there was technical
work also. Thompson, R. H. Canaday,
and Ritchie developed, on blackboards and
scribbled notes, the basic design of a file
system that was later to become the heart
of Unix. Most of the design was
Thompson’s, as was the impulse to think
about file systems at all, but [ believe I con-
tributed the idea of device files.
Thompson’s itch for creation of an operat-
ing system took several forms during this
period; he also wrote (on Multics) a fairly

detailed simulation of the performance of
the proposed file system design and of
paging behavior of programs. In addition,
he started work on a new operating system
for the GE-645, going as far as writing an
assembier for the machine and a rudimen-
tary operating system kemel whose
greatest achievement, so far as [ remember,
was to type a greeting message. The com-
plexity of the machine was such that a
mere message was already a fairly notable
accomplishment, but when it became clear
that the lifetime of the 645 at the Labs was
measured in months, the work was
dropped.

Also during 1965, Thompson
developed the game of ‘Space Travel.’ First
written on Multics, then transliterated into
Fortran for GECOS (the operating system
for the GE, later Honeywell, 633), it was
nothing less than a simulation of the move-
ment of the major bodies of the Solar Sys-
tem, with the player guiding a ship here
and there, observing the scenery, and
attempting to land on the various planets
and moons. The GECOS version ~was
unsatisfactory in two important respects:
first, the display of the state of the game
was jerky and hard to control because one
had to type commands at it, and second, a
game cost about $75 for CPU time on the
big computer. It did not take long, there-
fore, for Thompson to find a little-used
PDP-7 computer with an excellent display
processor; the whole system was used as a
Graphic-Il terminal. He and I rewrote
Space Travel to run on this machine. The
undertaking was more ambitious than it
might seem; because we disdained all exist-
ing software, we had to write a floating-
point arithmetic package, the pointwise
specification of the graphic characters for
the display, and a debugging subsystem
that continuously displayed the contents of
tvped-in locations in a corner of the screen.
All this was written in assembly language
for a cross-assembler that ran under
GECOS and produced paper tapes to be
carried to the PDP-7.

Space Travel, though it made a very
attractive game, served mainly as an intro-
duction to the dumsy technology of
preparing programs for the PDP-7. Soon
Thompson began implementing the paper

-



file system (perhaps ‘chalk file system’
would be more accurate) that had been
designed earlier. A file system without a
way to exercise it is a sterile proposition,
so he proceeded to flesh it out twith the
other requirements for a working operating
system, in particular the noton of
processes. Then came a small set of user-
level utilities: the means to copy, print,
delete, and edit files, .and of course a sim-
ple command interpreter (shell). Up to
this tme all the programs were written
using GECOS and files were transferred to
the PDP-7 on paper tape; but once an
assembler was completed the system twas
able to support itself. Although it was not
until well into 1970 that Brian Kernighan
. suggested the name ‘Unix,’ in a somewhat
treacherous pun on ‘Multics,” the operating
system we know today was bom.

The PDP-7 Unix file system

Structurally, the file system of PDP-7
Unix was nearly identical to today’s. [t
had

1)  Ani-list: a linear array of i-nodes each
describing a file. An i-node con-
tained less than it does now, but the
essential information was the same:
the protection mode’ of the file, its
type and size, and the list of physical
blocks holding the contents.
Directories: a spedial kind of file con-
taining a sequence of names and the
associated i-number.

Special files describing devices. The
device specification was not contained
explicitly in the i-node, but was
instead encoded in the number:
specific i-numbers corresponded to
specific files.

The important file system calls were
also present tfrom the start. Read, write,
open, eat (sic), close: with one very
important exception, discussed below, they
were similar to what one finds now. A
minor difference was that the unit of IO
was the word, not the byte, because the
PDP-7 was a word-addressed machine. In
practice this meant merely that ail pro-
grams dealing with character streams
ignored null characters, because nuil was
used to pad a file to an even number of

2)

3)

characters. Another minor, occasionally
annoying difference was the lack of erase
and kill processing for terminals. Termi-
nals, in effect, were always in raw mode.
Ornly a few programs (notably the shell
and the editor) bothered to implement
erase-kiil processing.

In spite of its considerable similarity
to the current file system, the' PDP-7 file
system was in one way remarkably dif-
ferent: there were no path names, and
each file-name argument to the system was
a simple name (without /) taken relative
to the current directory. "Links, in the
usual Unix sense, did exist. Together with
an elaborate set of conventions, they were
the principal means by which the lack of
path names became acceptable.

The link call took the form
link(dir, file, newname)

where dir was a directory file in the
current directory, file an existing entry in
that directory, and newname the name of
the link, which was added to the current
directory. Because dir needed to be in the
current directory, it is evident that today’s
prohibition against links to directories was
not enforced; the PDP-7 Unix file systemi
had the shape of a general directed graph.

So that every user did not need to
maintain a link to all directories of interest,
there existed a directory called dd that con-
tained entries for the directory of each
user. Thus, to make a link to flle x in
directory ken, | might do

In dd ken ken
In ken x x
rm ken

This scheme rendered subdirectories suffi-
dently hard to use as to make them
unused in practice. Another important
batrier was that there was no way to create

" a directory while the system was running;

all were made during recreation of the file
system from paper tape, so that directories
were in effect 2 nonrenewable resource.

The dd convention made the chdir
command relatively convenient. [t took
multiple arguments, and switched the
current directory to each named directory
in turn. Thus
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chdir dd ken

would move to directory ken. (Inciden-
wlly, chdir was spelled ch; why this was
expanded when we went to the PDP-11 [
don’t remember.)

The most serious inconvenience of
the implementation of the file system,
aside from the lack of path names, was the
difficulty of changing its configuration; as
mentioned, directories and spedal files
were both made only when the disk was
recreated. Installation of a new device was
very painful, because the code for devices
was spread widely throughout the system;
for example there were several loops that
visited each device in turn. Not surpris-
. ingly, there was no notion of mounting a
removable disk pack, because the machine
had only a single fixed-head disk.

The operating system code that
implemented this file system was a drasti-
cally simplified version of the present
scheme. One important simplification fol-
lowed from the fact that the system was
not multi-programmed; only one program
was in memory at a time, and control was
passed between processes only when an
explicit swap took place. So, for example,
there was an ige! routine that made a
named i-node available, but it left the i-
node in a constant, static location rather
than returning a pointer into a large table
of active i-nodes. A precursor of the
current buffering mechanism was present
(with about 4 buffers) but there was essen-
tially no overlap of disk /O with computa-
tion. This was avoided not merely for sim-
plicty. The disk attached to the PDP-7
was fast for its time; it transferred one 18-
bit word every 2 microseconds. On the
other hand, the PDP-7 itself had a memory
cycle time of 1 microsecond, and most
instructions took 2 cycles (one for the
instruction itself, one for the operand).
However, indirectly addressed instructions
required 3 cycles, and indirection was quite
common, because the machine had no
index registers. Finally, the DMA con-
troller was unable to access memory during
an instruction. The upshot was that the
disk would incur overrun errors if any
indirectly-addressed instructions were exe-
cuted while it was transferring. Thus

control could not be returned .to the user,
nor in fact could general system code be
executed, with the disk running. The
interrupt routines for the clock and termi-
nals, which needed to be runnable at all
times, had to be coded in very strange
fashion to avoid indirection.

Process control

By ‘process control,’ I mean the
mechanisms by which processes are
created and used; today the system calls
fork, exec, wait, and exit implement these
mechanisms. Unlike the file system, which
existed in nearly its present form from the
earliest days, the process control scheme
underwent considerable mutation after
PDP-7 Unix was already in use. (The
introduction of path names in the PDP-11
system was certainly a considerable nota-
tional advance, but not a change in funda-
mental structure.)

Today, the way in which commands
are executed by the shell can be summar-
ized as follows:

1)  The shell reads a command line from
the terminal.

2) It creates a child process by fork.

3) The child process uses exec to call in
the command from a file.

4)  Meanwhile, the parent shell uses wait

to wait for the child (command) pro-
cess to terminate by calling exit.
The parent shell goes back to step 1).

Processes (independently executing
entities) existed very early in PDP-7 Unix.
There were in fact precisely two of them,
one for each of the two terminals attached
to the machine. There was no fork, wait,
or exec. There was an exit, but its meaning
was rather different, as will be seen. The
main loop of the shell went as follows.

1) The shell closed all its open files,
then opened the terminal spedial file
for standard input and output (file
descriptors 0 and 1).

It read a command line from the ter-
minal.

It linked to the file specifving the
command, opened the file, and
removed the link. Then it copied a

5)
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small bootstrap program to the top of
memory and jumped to it; this
bootstrap program read in the file
over the shell code, then jumped to
the first location of the command (in
effect an exsc).

The command did its work, then ter-
minated by calling exit. The exit call
caused the system to read in a fresh
copy of the shell over the terminated
command, then to jump to its start
(and thus in effect to go to step 1).

- The most interesting thing about this
primitive implementation is the degree to
which it anticipated themes developed
more fully later. True, it could support
neither background processes nor shell
- command fles (let alone pipes and filters);
but IO redirection (via ‘<’ and ‘>’) was
soon there; it is discussed below. The
implementation of redirection was quite
straightforward; in step 3) above the shell
just replaced its standard input or output
with the appropriate file. Crudial to subse-
quent development was the implementa-
ton of the shell as a user-level program
stored in a file, rather than a part of the
operating system.

The structure of this process control
scheme, with one process per terminal, is
similar to that of many interactive systems,
for example CTSS, Multics, Honeywell
TSS, and IBM TSS and TSO. In general
such systems require special mechanisms
to implement useful facilities such as
detached computations and command files;
Unix at that stage didn’t bother to supply
the special mechanisms. It also exhibited
some irritating, idiosyncratic problems.
For example, a newly recreated shell had
to close all its open files both to get rid of
any open files left by the command just
executed and to rescdnd previous IO
redirection. Then it had to reopen the spe-
dal fle corresponding to its terminal, in
order to read a new command line. There
was no /dev directory (because no path
names); moreover, the shell could retain no
memory across commands, because it was
reexecuted afresh after each command.
Thus a further file system convention was
required: each directory had to contain an
entry ity for a spedial file that referred to
the terminal of the process that opened it.

4)

-5.

If by accident one changed into some direc-
tory that lacked this entry, the shell would
loop hopelessly; about the only remedy
was to reboot. (Sometimes the missing
link could be made from the other termi-
nal.)

Process control in its modern form
was designed and implemented within a
couple of days. It is astonishing how
easily it fitted into the existing system; at
the same time it is easy to see how some of
the slightly unusual features of the design
are’ present precisely because they
represented small, easily-coded changes to
what existed. A good example is the
separation of the fork and exec -functions. -
The most common model for the creation
of new processes involves specifying a pro-
gram for the process to execute; in Unix, a
forked process continues to run the same
program as its parent untl it performs an
explicit exec. The separation of the func-
tions is certainly not unique to Unix, and
in fact it was present in the Berkeley time-
sharing system,® which was well-known to
Thompson. Still, it seems reasonable to
suppose that it exists in Unix mainly
because of the ease with which fork could
be implemented without changing much
eise. The system already handled multiple
(i.e. two) processes; there was a process
table, and the processes were swapped
between main memory and the disk. The
initial implementation of fork required only
1) Expansion of the process table

2) Addition of a fork call that copied the
current process to the disk swap area,
using the already existing swap IO
primitives, and made some adjust-
ments to the process table.

In fact, the PDP-7’s fork call required
precisely 27 lines of assembly code. Of
course, other changes in the operating sys-
tem and user programs were required, and
some of them were rather interesting and
unexpected. But a combined fork-exec
would have been considerably more com-
plicated, if only because exec as such did
not exist; its function was already per-
formed, using explicit [O, by the shell.

The exit system call, which previously
read in a new copy of the sheil (actually a
sort of automatic exec but without
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arguments), simplified considerably; in the
new version a process only had to clean
‘out its process table entry, and give up
control.

Curiously, the primitives that became
wait were considerably more general than
the present scheme. A pair of primitives
sent one-word messages between named
processes:

smes(pid, meésage)
(pid, message) = rmes()

The target process of smes did not need to
have any ancestral relationship with the
. receiver, although the system provided no
explicit mechanism for communicating pro-
cess IDs except that fork returned to each
. of the parent and child the ID of its rela-
tive. Messages were not queued; a sender
delayed until the receiver read the mes-
sage.

The message facility was used as fol-
lows: the parent shell, after creating a pro-
cess to execute a command, sent a message
.to the new process by smes; when the com-
mand terminated (assuming it did not try
to read any messages) the shell’s biocked
smes call returned an error indication that
the target process did not exist. Thus the
shell's smes became, in effect, the
equivalent of wait.

A different protocol, which took
advantage of more of the generality offered
by messages, was used between the initial-
ization program and the shells for each ter-
minal. The initialization process, whose ID
was understood to be 1, created a shell for
each of the terminals, and then issued
rmes; each shell, when it read the end of
its input file, used smes to send a conven-
tional ‘I am terminating’ message to the
initialization process, which recreated a
new shell process for that terminal.

I can recall no other use of messages.
This explains why the facility was replaced
by the wait call of the present system,
which is less general, but more directly
applicable to the desired purpose. Possibly
relevant also is the evident bug in the
mechanism: if a command process
attempted to use messages to communicate
with other processes, it would disrupt the
shell's  synchronization. = The  shell

depended on sending a message that was
never received; if a command executed
rmes, it would receive the shell's phony
message, and cause the shell to read
another input line just as if the command
had terminated. If a need for general mes-
sages had manifested itself, the bug would
have been repaired.

At any rate, the new process control
scheme instantly rendered some very valu-
able features trivial to implement; for
exampie detached processes (with ‘&’) and
recursive use of the shell as a command.

“Most systems have to supply some sort of
special ‘batch job submission’ facility and a
specal command interpreter for files dis-
tinct from the one used interactively.

Although the multiple-process idea
slipped in very easily indeed, there were
some aftereffects that weren't anticipated.
The most memorable of these became evi- -
dent soon after the new system came up
and apparently worked. In the midst of
our jubilation, it was discovered that the
chdir (change current directory) command
had stopped working. There was much
reading of code and anxious introspection
about how the addition of fork could have
broken the chdir call. Finally the truth
dawned: in the old system chdir was an
ordinary command; it adjusted the current
directory of the (unique) process attached
to the terminal. Under the new system,
the chdir command correctly changed the
current directory of the process created to
execute it, but this process promptly ter-
minated and had no effect whatsoever on
its parent shell! It was necessary to make
chdir a special command, executed inter-
nally within the shell. It turns out that
several command-like functions have the
same property, for example login.

Another mismatch between the sys-
tem as it had been and the new process
control scheme tock longer to become evi-
dent. Originally, the read/write pointer
associated with each open file was stored
within the process that opened the file.
(This pointer indicates where in the file the
next read or write will take place.) The
problem with this organization became evi-
dent only when we tried to use command
files. Suppose a simple command file con-
tains

.



Is
who

and it is executed as follows:

sh comfile >nutput

The sequence of events was

The main shell creates a new process,
which opens onutfile to receive the
standard output and executes the
shell recursively.

The nesw shell creates another procass
to execute [s, which correctly writes
- on file output and then terminates.

'3)  Another process is created to execute

the next command. However, the IO
pointer for the output is copied from
that of the shell, and it is still 0,
because the shell has never written
on its output, and IO pointers are
assodated with processes. The effect
is that the output of who overwrites

and destroys the output of the:

preceding /s command.

Solution of this problem required
ceation of a new system table to contain
the IO pointers of open files independently
of the process in which they were opened.

10 Radirection

The very convenient notation for 10
redirection, using the ‘>’ and ‘<’ charac-
ters, was not present from the very begin-
ning of the PDP-7 Unix system, but it did
appear quite early. Like much else in
Unix, it was inspired by an idea from Mul-
Hes. Multics has a rather general IO
redirection mechanism® embodying named
[O streams that can be dynamically
redirected to various devices, files, and
even through .special stream-processing
modules. Even in the version of Multics
we were familiar with a decade ago, there
existed a command that switched subsa-
quent output normally destined for the ter-
minal to a file, and another command to
reattach output to the terminal. Where
under Unix one might say

Is >xx

to get a listing of the names of one's files
in xx, on Multics the notation was

~4

ivcall attach user_output file xx

list

ivcall attach user_output syn user_i/o
Even though this very clumsy sequence
was used often during the Multics days,
and would have been utterly straightfor-
ward to integrate into the Multics shell, the
idea did not occur to us or anyone else at
the time. [ speculate that the reason it did
not was the sheer size of the Multics pro-
ject: the implementors of the IO system
were at Bell Labs in Murray Hill, while the
shell was done at MIT. We didn’t consider
making changes to the shell (it was their
program); correspondingly, the keepers of
the shell may not even have known of the
usefulness, albeit cumsiness, of iocall.
(The 1969 Multics manual* lists iocall as an
‘author-maintained,’ that is non-standard,
command.) Because both the Unix IO sys-
tem and its sheil were under the exclusive
control of Thompson, when the right idea
finally surfaced, it was a matter of an hour
or so to implement it. :

The advent of the PDP-11

By the beginning of 1970, PDP-7 Unix
was a going concern. Primitive by today’s
standards, it was still capable of providing
a-more congenial programming environ-
ment than its alternatives. Nevertheless, it
was clear that the PDP-7, a machine we
didn’t even own, was already obsolete,
and its successors in the same line offered
little of interest. In early 1970 we proposed
acquisiion of a PDP-11, which had just
been introduced by Digital. In some sense,
this proposal was merely the latest in the
series of attempts that had been made
throughout the preceding year. It differed
in two important ways. First, the amount
of money (about $63,000) was an order of
magnitude less than what we had previ-
ously asked; second, the charter sought
was not merely to write some (unspecified)
operating system, but instead to create a
system specifically designed for editing and
formatting text, what might today be called
a ‘word-processing svstem.’ The impetus
for the proposal came mainly from J. F.
Ossanna, who was then and until the end
of his life interested in text processing. If
our early proposals were too vague, this



one was perhaps too specific; at first it too
met with disfavor. Before long, however,

funds were obtained through the efforts of

L. E. McMahon and an order for a PDP-11
was placed in May.

The processor arrived at the end of
the summer, but the PDP-11 was so new a
product that no disk was available until
December. In the meantime, a rudimen-
tary, core-only version of Unix was written
using a qoss-assembler on the PDP-7.
Most of the time, the machine sat in a
comner, enumerating all the closed Knight's
tours on a 6x8 chess board-—a three-
month job.

The first PDP-11 system

Once the disk arrived, the system
was quickly completed. In internal struc-
ture, the first version of Unix for the PDP-
11 represented a relatively minor advance
over the PDP-7 system; writing it was
largely a matter of transliteration. For
example, there was no multi-programming;
only one user program was present in core
at any moment. On the other hand, there
were important changes in the interface to
the user: the present directory structure,
with full path names, was in place, along
with the modern form of exec and wait,

“and conveniences like character-erase and

line-kill processing for terminals. Perhaps
the most interesting thing about the enter-
prise was its small size: there were 24K
bytes of core memory (16K for the system,
8K for user programs), and a disk with 1K
blocks (512K bytes). Files were limited to
64K bytes. -

At the time of the placement of the
order for the PDP-11, it had seemed
natural, or perhaps expedient, to promise a
system dedicated to word processing.
During the protracted arrival of the
hardware, the increasing usefulness of
PDP-7 Unix made it appropriate to justify
creating PDP-11 Unix as a development
tool, to be used in writing the more
special-purpose system. By the spring of
1971, it was generally agreed that no one
had the slightest interest in scrapping
Unix. Therefore, we transliterated the roff
text formatter into PDP-11 assembler
language, starting from the PDP-7 version
that had been transliterated from Mcliroy’s

BCPL version on Multics, which had in
turn been inspired by J. Saltzer's runoff
program on CTSS. In early summer, editor
and formatter in hand, we felt prepared to
fulfill our charter by offering to supply a
text-processing service to the Patent
department for preparing patent applica-
tions. At the time, they were evaluating a
commercial system for this purpose; the
main advantages we offered (besides the
dubious one of taking part in an in-house
experiment) were two in number: first, we
supported Teletype’s model 37 terminals,
which, with an extended type-box, could
print most of the math symbols they
required; second, we quickly endowed roff
with the ability to produce line-numbered
pages, which the Patent Office required
and which the other system could not han-
dle.

During the last half of 1571, we sup-
ported three typists from the Patent
department, who spent the day busily typ-
ing, editing, and formatting patent applica-
tions, and meanwhile tried to carry on our
own work. Unix has a reputation for sup-
plying interesting services on modest
hardware, and this period may mark a
high peint in the benefitlequipment ratio;
on a machine with no memory protection
and a single .5 MB disk, every test of a
new program required care and boldness,
because it could easily crash the system,
and every few hours’ work by the typists
meant pushing out more information onto -
DECtape, because of the very small disk.

The experiment was trying but suc-

‘cessful. Not only did the Patent depart-

ment adopt Unix, and thus become the
first of many groups at the Laboratories to
ratify our work, but we achieved sufficient
credibility to convince our own manage-
ment to acquire one of the first PDP 11/45
systems made. We have accumulated
much hardware since then, and labored
continuously on the software, but because
most of the interesting work has already
been published, (e.g. on the system
itself-36 and the text processing applica-
tions”$9 ) it seems unnecessary to repeat
it here. : :



Pipes

One of the most widely admired con-
tributions of Unix to the culture of operat-
ing systems and command languages is the
pive, as used in a pipeline of commands.
Of course, the fundamental idea was bv no
means new; the pipeline is merely a
spedfic form of coroutine. Even the imple-
mentation was not unprecedented,
although we didn’t kriow it at the tme; the
‘communication files’ of the Dartmouth
Time-Sharing System!0 did very nearly
what Unix pipes do, though they seem not
to have been exploited so fully.

Pipes appeared in Unix in 1972, well
after the PDP-11 version of the system was
in operation, at the suggestion (or perhaps
- insistence) of M. D. Mcllroy, a long-time
advocate of the non-hierarchical control
flow that characterizes coroutines. Some
years before pipes were implemented, he
suggested that commands should be
thought of as binary operators, whose left
- and right operand specified the input and

ocutput files. Thus a ‘copy’ utility would be
commanded by .

inputfile copy outputfile

To make a pipeline, command operators
could be stacked up. Thus, to sort input,
paginate it neatly, and print the result off-
line, one would write

input sort paginate offprint
In today’s system, this would correspond
to

sort input | pr | opr

The idea, explained one afterncon on a
biackboard, intrigued us but failed to ignite
any immediate action. There were several
objections to the idea as put: the infix nota-
ton seemed too radical (we were too
accustomed to typing ‘cp x ¥ to copy x to
¥); and we were unable to see how to dis-
tinguish command parameters from the
input or output files. Also, the one-input
one-output model of command execution
seemed too confining. What a failure of
imagination!

Some time later, thanks to Mcllroy's

persistence, pipes were finally installed in
the operating system (a relatively simple
job), and a new notation was introduced.

It used the same characters as for VO
redirection. For example, the pipeline
above might have been written

sort input >pr>opr>

The idea is that following a ‘>’ may be
either a file, to specify redirection of output
to that file, or a command into which the
output of the preceding command is
directed as input. The trailing ‘>’ was
needed in the example to specify that the
(nonexistent) output of opr should be
directed to the console; otherwise the com-
mand opr would not have been executed at
all; instead a file opr would have been
created.

The new fadlity was enthusiastically
received, and the term ‘filter was soon
coined. Many commands were changed to
make them usable in pipelines. For exam-
ple, no ome had imagined that anyone
would want the sort or pr utility to sort or
print its standard input if given no explicit
arguments.

Scon some problems with the nota-
tion became evident. Most annoying was a
silly lexical problem: the string after ‘>
was delimited by blanks, so, to give a
parameter to pr in the example, one had to
quote:

sort input >"pr =2">opr>

Second, in attempt to give generality, the
pipe notation accepted ‘<’ as an input
redirection in a way corresponding to ‘>’;
this meant that the notation was not
unique. One could also write, for exam-
ple,

opr <pr<"sort input"<
or even
pr <"sort input"< >opr>

The pipe notation using ‘<’ and ‘>’ sur-
vived only a couple of months; it was
replaced by the present one that uses a
unique operator to separate components of
a pipeline. Although the oid notation had
a certain charm and inner consistency, the
new one is certainly superior. Of course, it
too has limitations. It is unabashedly
linear, though there are situations in which

muitiple redirected inputs and outputs are

called for. For example, what is the best
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way to compare the outputs of two pro-
grams? What is the appropriate notation
for invoking a program with two parallel
output streams?

I mentioned above in the section on
IO redirection that Multics provided a
mechanism by which IO streams could be
directed through processing modules on
the way to (or from) the device or file serv-
ing as source or sink.” Thus it might seem
that stream-splicing in Multics was the
direct precursor of Unix pipes, as Multics
IO redirection certainly was for its Unix
version. In fact I do not think this is true,
or is true only in 2 weak sense. Not only
were coroutines well-known already, but
their embodiment as Multics spliceable 10
.- modules required that the modules be spe-
dally coded in such a way that they could
be used for no other purpose. The genius
of the Unix pipeline is precisely that it is
constructed from the very same commands
used constantly in simplex fashion. The
mental leap needed to see this possibility
and to invent the notation is large indeed.

High-level languages

Every program for the original PDP-7
Unix system was written in assembiy
language, and bare assembly language it
was—for example, there were no macros.
Moreover, there was no loader or link-

-10-

to enjoy the benefits of using a reasonable
language to write what are usually called
‘systems programs:’ compilers, assemblers,
and the like. (Although some might con-
sider the PLI we used under Multics
unreasonable, it was much better than

assembly language.) Among other pro-

grams, the PDP-7 B cross-compiler for the
PDP-11 was written in B, and in the course

- of time, the B compiler for the PDP-7 itself

was transliterated from TMG into B.

When the PDP-11 arrived, B was
moved to it almost immediately. In fact, a
version of the multi-precision ‘desk calcula-
tor’ program dc was one of the earliest pro-
grams to run on the PDP-11, well before
the disk arrived. However, B did not take

- over instantly. Only passing thought was

editor, so every program had to be com- .

plete in itself. The first interesting
language to appear was a version of
MeClure’s TMG!! that was implemented by
Mcllroy. Soon after TMG became avail-
able, Thompson decided that we could not
pretend to offer a real computing service
without Fortran, so he sat down to write a
Fortran in TMG. As I recall, the intent to
handle Fortran lasted about a week. What
he produced instead was a definition of
and a compiler for the new language B.12 B
was much influenced by the BCPL
language;1®> other influences  were
Thompson’s taste for spartan syntax, and
the very small space into which the com-
piler had to fit. The compiler produced
simple interpretive code; although it and
the pro it produced were rather
slow, it made life much more pleasant.
Once interfaces to the regular system calls
were made available, we began once again

given to rewriting the operating svstem in
B rather than assembler, and the same was
true of most of the utiliies. Even the
assembler was rewritten in assembler.
This approach was taken mainly because of
the slowness of the interpretive code. Of
smaller but still real importance was the
mismatch of the word-oriented B language
with the byte-addressed PDP-11.

Thus, in 1971, work began on what
was to become the C language.!4 The story
of the language developments from BCPL
through B to C is told elsewhere,!® and
need not be repeated here. Perhaps the
most important watershed occurred during
1973, when the operating system kernel
was rewritten in C. It was at this point
that the system assumed its modern form;
the most far-reaching change was the intro-
duction of multi-programming. There
were few externally-visible changes, but
the internal structure of the system became
much more rational and general. The suc-
cess of this effort convinced us that C was
useful as a nearly universal tool for sys-

‘tems programming, instead of just a toy

for simple applications.

Today, the only important Unix pro-
gram still written in assembler is the
assembler itself; virtually all the utility pro-
grams are in C, and so are most of the
applications programs, although there are
sites with many in Fortran, Pascal, and
Algol 68 as well. It seems certain that
much of the success of Unix follows from
the  readability, modifiability, and

.~

“«



Moo @

—— e ——

portability of its software that in-turn fol-
lows from its expression in high-level

languages.

Conclusion

One of the comforting things about
old memories is their tendency to take on a
rosy glow. The programming environment
provided by the early versions of Unix
seems, when described here, to be
extremely harsh and primitive. I am sure
that if forced back to the PDP-7 I would
find it intolerably limiting and lacking in
conveniences. Nevertheless, it did not
seem so at the tme; the memory fixes on
what was good and what lasted, and on
the joy of helping to ceate the improve-

. ments that made life better. In ten years, I

hope we can look back with the same
mixed impression of progress combined
with continuity.
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