
iSSN 1035-752t Print post approved by Australia Post - PP2391500002

AUUGN
Volume 17, Number 1
Februar)~ 1996

AUUG Membership & General
Correspondence
The AUUG Secretary
PO Box 366
Kensington NSW 2033
Tel: (02) 361 5994
Fax: (02) 332 4066
Freephone: 1-800..625-655
E-mail: auug@auug.org.au
AUUG Executive
President: Michael Paddon
mwp @ acca.net.au
Kodak
173 Elizabeth St.
Coburg VIC 3058
Vice President: Glenn Huxtable
g/enn@fs.com.au
Functional Software
PO Box 192
Leederville WA 6903
Secretary: Peter Wishart
pjweauug.org.au
EASAMS/GEC Marconi Systems
PO Box 4806
Unit 7, 10 Kennedy St.
Kingston ACT 2604
Treasurer: Stephen Boucher
stephen @ mtiame.mtia.oz.au
MTIA
509 St. Kilda Road
Melbourne VIC 3004
Committee Members:
Phil McCrea (Past President:)
pmc@syd.dit.csiro.au
Division of Information Technology
CSIRO
Building E6B
Macquarte University NSW 2113
Frank Crawford
frank @ atom.ansto.gov.au
ANSTO
Pdvate Mail Bag 1
Menai NSW 2234
Lucy Chubb
lucyc@sw.oz.au
Softway Pry. Ltd.
PO Box 305
Strawberry Hills NSW 2021
Chris Maltby
chris @ sw.oz.au
Softway Ply. Ud.
PO Box 305
Strawberry Hills NSW 2021
David Purdue
Bavid.Purdue @ aus.sun.com
SunSoft
119 Willoughby Rd.
Crows Nest NSW 2065

AUUGN Business Manager
Elizabeth Egan
auug@auug.org.au
PO Box 366
Kensington NSW 2033

Table of Contents
Editorial 3

President’s Report 3
Micha el Paddon

Software review:
Website 1.0/1.1 for Windows NT 4
Arthur Marsh

Preface to
"Why aren’t you using mmap0 yet?" 6
Kevin Sheehan

Paper: Why aren’t you
using mmap0 yet? 7
Kevin Sheehan

Advice: A Moving Story 19
Andrew van der Stock

Background: Linux - The Choice of a New Generation 20
Frank Crawford

Opinion: Will the real Information SuperHighway
please stand up! 21
Phil McCrea

Background: What is a Network? 23
Frank Crawford

Advice:.Computer Room Archaeology 24
Frank Crawford

AUUG Inc. acknowledges the
generous support of its

corporate sponsors...

TELLURIAN

February, 1996 1

UNIX Tricks & Traps 25
Janet Jackson (sub editor)

Book Reviews 27
Frank Crawford (sub editor)

WAUG news: From the Western Front 34

AUUG Canberra news: Canberra chapter 35

Rules of AUUG Incorporated 36

AUUGN Volume 16 Index:
Book Reviews (Sorted by author) 42

AUUGN Volume 16 Index:
Reports (Sorted by author) 44

AUUGN Volume 16 Index:
Papers (sorted by title) 45

AUUG Institutional Members 47

AUUG Membership applications & change notification

Contribution deadlines for
AUU N in 1995/96

Vol 17, ~,:2 (April ’96): April 15th

Vol 17, #3 (June ’96): May 24

Vol 17, #4 (August ’96): July 19

Vol 17,#5 (October ’96): September 20

Vol 17, #6 (December ’96): November 22

AUUGN Correspondence
Please send all correspondence
regarding AUUGN to:
AUUGN Editor
PO Box 366
Kensington NSW 2033
E-mail: auugn@auug.org.au
Submission Guidelines
Submission guidelines for AUUGN
contributions are regularly posted on
the aus.org.auug news group. They
are also available from the AUUG
Wodd Wide Web site at
http’J/www.auug.org.au
Alternately, e-mail to the above
correspondence address, requesting a
copy.
AUUGN Back-issues
A vadety of back-issues of AUUGN are
still available; for price and availability
details, please contact the AUUG
Secretariat, or write to:
AUUG Inc.
Back Issues Department
PO Box 366
Kensington NSW 2033
Australia
Conference Proceedings
A limited number of copies of the
Conference Proceedings from previous
AUUG Conferences are still available,
at $50 each for members, and $60 for
non-members. Contact the AUUG
Secretariat for details.
Mailing Lists
Inquiries regarding the purchase of the
AUUGN mailing list should be directed
to the AUUG Secretariat. Telephone
(02) 361 5994 dudng business hours,
or Fax (02) 332 4066.
Disclaimer
Opinions expressed by the authors and
reviewers are not necessarily those of
AUUG Incorporated, its Joumai, or its
editorial committee.
Copyright Information
Copyright ©1995 AUUG Incorporated.
All dghts reserved. AUUGN is the
journal of AUUG Incorporated, an
organlsation with the aim of promoting
knowledge and understanding of
Open Systems, includ~g, but not
restricted to, the UNIX~ system,
networking, graphics, user interfaces
and programming and development
environments, and related standards.
Copying without fee is permitted,
provided tl~at copies are made without
modification, and are not made or
distributed for commercial advantage.
Credit to AUUGN and the author(s)
must be given. Abstracting with credit
is permitted. No other reproduction is
permitted without prior permission of
AUUG Incorporated.
Trade marks
UNIX is a registered trade mark of
X/Open In the United States and other
countries,

2 AUUGN: The Journal of AUUG Inc.

Editorial

Editorial
Phil Anderson <phil @ osa.com.au>

Welcome to the first issue of AUUGN for 1996. Well,
the first official issue; as you all know, the last issue for
’95 only sprang forth in late Januar~ and even then
many of you received the special "bound on the right
issue" ... maybe our bindery was subconsciously
presaging our change in federal government! ; ")

Seriously though, I’d like to apologise for the binding
snafu; our printers do a stirling job of not only
printing, but also coordinating the binding and mail-
out of each issue. Most of the time, everything goes
extremely well, but once in a while, gremlins sneak
into the operation and voila!, a whole new way of ’
reading AUUGN.

The delay in getting vo1.16#6 out the door has pushed
this issue out by about a month, worst luck but I’m
already assembling the April issue, so we should be
back on track pretty soon. Thanks for your patience,
and keep submitting material ... or in the case of most
of you, start submitting material!

Things of note in this issue include the last word on
mmap (), courtesy of Kevin Sheehan (whose . s ±g
describes him as a "Consulting Poster Child" ...) and
for all you lawyer wannabes, the most recent
incarnation of the AUUG constitution.

Liz has promised me some photos from the Summer
conferences for the next issue; ooooh! Some fun!
AUUG will gladly accept donations not to print those
incriminating social pix (us? tabloid? nev-eerr!).

Y’all be good now!*;*

President’s Report
Michael Paddon <mpaddon @ acca.net.au>

As I write this column, the majority of the AUUG
Summer Conference Series is oven I have been
receiving excellent reports, and occasionally
incriminating photos, from all the completed events.
This year’s series appears to have been very successful,
with high quality programmes and fault free
organisation all round. Several of the conferences have
been multi day affairs, with some including strong
tutorial streams as well as papers.

Our Business Manager, Liz Egan, has been taking this
opportunity to visit all the chapters, so hopefully
many of you have had a chance to meet her by now.
One of Liz’s key roles is to assist the chapters develop
their activities programmes (whatever they may be),
and to assist the chapters coordinate both their events
and with each other. One of the fascinating things Liz
has noticed in her travels is just how diverse an
organisation AUUG is. No two chapters do things
alike, and they all have a distinct feel.

This poses some unique challenges for a national user
group, but it also is the source of great opportuni~. I
don’t think that we have really taken advantage of all
the resources hidden away in our chapters,
particularly in terms of the talented and insightful
speakers that would find a ready audience in other
parts of the country.

The AUUG committee has decided that another
roadshow (similar to the ones arranged with Kirk
McCusick and Brent Chapman) will be run midway
through this year. As well as international exports,
we’d also like to include some local content (bring out
some of our own hidden talent, so to speak). We have
had some very animated discussion about what an
appropriate topic would be, with Java being a hot
favourite subject to concerns about bandwagons. I’d
like to take this opportunity to ask: what, or who,
would you like to see?

All this talk about conferences lead us naturally to the
next big one. A lot more of the early organisational
work has been done towards the Winter Conference,
which will be held at the World Congress Centre in
Melbourne between the 18th and 20th of September.

Those of you that have been web surfing will have
already noticed that the AUUG 96page bears both the
AUUG and the Charles Sturt University logos. After
much deliberation, your committee has decided to
combine AUUG 96 with the Asia Pacific World Wide
Web Conference for the second year running.

This was not a straightforward decision because our
first experiment along these lines suffered some

February, 1996 3

Software review: Website 1.0/1.1 for Windows NT

serious teething troubles. Under our post mortem
scrutiny; however, we decided that the majority of
these occurred because the two conferences were
melded too late in the piece. Four streams was too
much, and there were major hassles with too much
being on at once and a perception that quality was
being swamped by quantity.

On a personal note, I’ll add here that I thought there
were some brilliant papers at last year’s conference.
And there were, as always, some that just did not work
out on the day. Nevertheless, it is no small thing to
produce a paper, have it accepted by our programme
committee, and then stand up and present at
Australia’s largest open systems conference. I always
have the highest respect for all of our presenters, and I
urge you to consider contributing a paper of your
own, especially if you have felt dissatisfied with the
content in the past.

Getting back to the joint conference, it was felt that
there really is an enormous synergy between AUUG
96 and the APWWW. Now, more than ever, the worlds
of Unix, programming, system administration and the
Internet are overlapping as the Web becomes the
delivery "tool de jour" for just about any new
computing or information service. Languages like
Java, in particular, are making the skills and lessons
found in the open systems world freshly relevant.

Given this commonality of interest, it seemed foolish
not to let each conference build on the strengths of the
other. Certainly; we expect to attract a number of high
quality papers from academia which would not
usually be submitted to an AUUG conference. We
have, however, taken certain steps to ensure that the
"AUUG 96 & Asia Pacific World Wide Web 2nd Joint
Conference and Exhibition" (the official name) is even
better than last year.

Firstly, we are currently planning for three streams,
covering the (rather broad) areas of Management,
Technical and Web. The reduction in concurrent
programming is expected to yield a better focused,
more enjoyable event while still leaving enough room
for the diversity of interest that characterises AUUG.
Of course, there will still be a strong tutorial
programme run on the days before the conference
proper.

Secondly, there is one conference committee and one
programme committee right from the outset. AUUG’s
key representatives on these bodies are Enno Davids
and Adrian Booth (as I mentioned in my last column),
although many other AUUG members will be serving
as well. In fact, this is a great time to call for volunteers
who can donate a chunk of their time towards these
and other conference related duties. Please feel free to
email me if you are interested...

Check out the web page (it’s linked off
http .. //www. auug. org. au/) and let us know what

~ou think. You’ll also find the call for papers there
hint, hint)..:.

Software review:

Website 1.0/1.1 for
Windows NT
Reviewed by Arthur Marsh <arthur@ gateway.dircsa.org.au>

O’Reitly and Associates Inc
1995, Software
ISBN 1-56592-143-7

In case anyone is wondering, yes I still run UNIX (- ...
For the purposes of this review I’m assuming that
AUUG members considering Website also have UNIX
in-house.

When this software was advertised for review by an
AUUG member, I was interested in seeing if Website
could integrate well with an existing UNIX and
Netware environment. The answer turned out to be
yes, but to begin at the beginning:

What you get
I’d heard of Website through Boardwatch and Byte
magazines as a World Wide Web server for Windows
NT and Windows 95, and wondered what it could
offer someone who was running a freely available
HTTPD on UNIX. It turns out that the Website
package includes with the server the server admin
program, plus Webview, a utility for checking the links
in HTML documents, Webindex, a program for
building search capabilities into Website, an Image-
map editor, the WWW viewer Enhanced Mosaic, and
new to version 1.1 the Hot Dog HTML editor.
Physicall}~ version 1.0 came on two 3.5" floppy disks
and was accompanied by a 320-odd page book of the
quality we’ve come to expect from O’Reilly and a
Website T-shirt with the Website map logo instead of
an animal. Note that at present Website cannot act as
an HTTP proxy server.

Installation
Windows NT Work-station 3.50 was installed on a
486DX-33 pc with a 200 Megabyte IDE hard disk and
16 Megabytes of RAM and an NE2000 clone network
card without trouble once the video card was specified
as plain VGA. The Netware client capability had to be
explicitly installed, which was unexpected considering
that the IPX/SPX transport had already been specified.
A loose 10 Base-T connection was a surprisingly subtle
problem to diagnose, but was easily fixed (- :.

4 AUUGN: The Journal of AUUG Inc.

Following the instructions in the Website
documentation for setting up multi-homing, the NT
machine was configured for 2 IP addresses,
202.14.187.111 and 202.14.187.121. Using Samba on an
existing UNIX machine (202.14.187.122) and the
Windows NT file manager, the UNIX machine’s/opt/
lib/httpd directory was mapped to a drive letter on
the NT machine. Drives were also mapped from the
Netware server.

Website itself was then installed, with the document
root pointing to the existing document root on the
UNIX machine. The documentation provides a good
checklist of tests to run, which worked, with the
installation of Website taking under an hour. Website
can be started by a double click on the server icon, or
can be installed as a service under NT so that an
account other than administrator can use the NT
machine whilst Website is running. One of the first
places one should connect to is Website Central, http:/
/website.ora.com, which has up-to- date information
on Website and third party utilities.

The server admin program enables one to map
between the directory format in HTML files and the
drive letters on the NT machine. At the simplest level
the location of the document root is specified. I added
mappings for the Netware server directories, and
could also individually map directories that had the
format ~usemame to/home/usemame/public_html
on a UNIX machine.

Multi-homing
With version 1.1 of Website (which was made available
to me from a passworded section on Website Central),
a multi-homing Wizard is available to assist in creation
of multiple identities for the WWW server. As version
1.0 was running when multi- homing was set up, I had
to follow instructions on Website Central, which
involved using the NT Registry Editor. One problem I
encountered was in setting up a sub- directory off the
document root as the document root for a second
identity - some tricky mapping was required and
Webindex refused to run. If you are considering multi-
homing on Website, the recommended method is to
have separate hierarchies under the document root
and use the multi-homing wizard.

Logging
Website provides access logs similar to CERN httpd on
UNIX, but requires cycling of the logs - running a
program that closes the existing log file, renaming it
and opening a new log file - in order to view recent log

Software review: Website 1.0/1.1 for Windows NT

activity. DNS resolution of the IP addresses of
connecting systems is a configurable option.

CGI-bin
I did not migrate the CGI-bin programs from UNIX
over to Website, but if one wants to run CGI-bin scripts
under Website, some sample programs are available
for running under Website’s CGI-Win, CGI-shl, and
CGI-DOS interfaces. Visual Basic is recommended if
you wish to use CGI-Win, and one needs to obtain the
NT POSIX shell from the Windows NT Resource Kit or
an NT version of Perl to use the CGI-shl.

Webview
Version 1.0 of Website included Webview, a program
that can show you the document tree under any
reachable URL, and perhaps more importantly;
indicate which HTML documents are unreachable
from the machine running Website and Webview.
Version 1.1 adds the very welcome feature of allowing
the use of an HTTP proxy; so that offsite references
don’t have to be reached every time Webview is run.

Conclusion
Website 1.1 is an easy to set up and stable WWW
server package, which can easily added to an existing
LAN, and provides a useful collection of tools that are
worthwhile not just for the Website server, but also for
the existing WWW servers at a UNIX-equipped site. If
you need to move data from sources accessible to
Visual Basic in response to on-line queries, Website is a
logical solution. Website can also be used to hand over
the local WWW page creation and serving tasks to a
relatively low cost machine on the LAN, whilst not
removing the usefulness of having UNIX on-site for a
proxy httpd and general intemet connectivity.

Check ht tp : //webs i te. ora. com (running Website, of
course) for a detailed list of Website’s features..:.

February, 1996 5

Preface to "Why aren’t you using mmapO yet?"

Preface to "Why
aren’t-you using
mmap() yet?"
Kevin Sheehan
Uniq Professional Services
PO Box 70 Paddington, NSW, 2021 Aust.
<kevin @ uniq.com.au>

Some time ago a quick article originally written as a
managerial overview of VM facilities was published
here in AUUGN. It wasn’t really intended for the
audience of AUUGN, and a letter to the editor from
Andrew Tune made a number of criticisms, some
worth noting.

First, that it was non-technical I concede - I had no idea
it was to have been published in ALFUGN, as it was
originally written for Open Systems Review. That it
was inaccurate I’ll dispute, but in credit to the critic,
some of the points were necessarily hazy in an
overview and may have been misunderstood.

Mr. Tune’s assertion that twice the memory will not be
used in a read() is incorrect. In SVR4, the buffer cache
is only used for file system metastate. Under VM, all
other pages (such as file pages) compete equally for
physical memory. A read() of 16 MB will cause all
16MB to be "faulted into" memory at some point.
While these pages will be read-only; the system copies
the data to the application’s address space, which
does dirty those pages - causing them to be
candidates for a page out to the swap device at a later
time.

My greatest concern with the feedback is that it might
lead the less experienced to believe they have been
sold a load of goods :-) The article (and certainly this
paper) made it clear that the advantages being
discussed were those of regular file access, which is by
far the most common in application programming. I
agree that filters are a good model for many types of
application - but their use for large files (e.g. imaging
applications) is prohibitive in terms of resources
required. As an another example, if 100 processes all
read() in/etc/passwd, there are 100 dirty copies in
private memory - if they all used mmap0 instead,
there would be one read-only copy in memory.

As to the issue of standards and implementation, I’d
say that if you are sticking strictly to POSIX standards,
then yes, you do not have mmap0 as a tool. POSIX is a
fairly comprehensive standard, but does not include
many facilities of great use. If you pick SVR4 as your
programming model, then you are guaranteed to have

it available. All of the major workstation vendors
implement rnmap0 and, contrary to Mr Tune’s
assertion, sequential access is not worsened by use of
mmap0, it is indeed enhanced by the ability to notify
the system explicitly of the pattern of access you
intend. In general, the savings in used memory are
impressive.

fread0 and fwrite0 have their place too, but to assert
that mmap0 is not useful because it is not part of
POSIX is to miss the point of the paper, mmap0 *is* a
very useful system call that is vasty underutilized - in
the author’s opinion because it is not well understood
what the effects of using it are. The following is a
paper presented originally at SUG ’92. It has been
presented a number of times since then in various
forms in an attempt to raise the level of awareness.

If all you have is a hammer, then everything looks like
a nail. The intention of this paper is to present
application programmers with another tool in the box,
not to advocate the loss of the filter paradigm or to
ignore issues such as portability. In that spirit, I present
"Why aren’t you using mmap0 yet?", and apologize
not a whit for the evangelical nature of the paper : -)

Z YOUR JOURNAL!

Without you, there is no
AUUGN: if you’ve
knowledge to share, share
it through AUUG’s
bimonthly journal.

You’ll be reaching over
700 individuals, and more
than 300 organisations
involved in the UNIX/
Open Systems world.

WE’RE LOOKING FOR:

Talk to your local
Chapter contact for
ideas, and see
elsewhere in this
issue for submission
guidelines.

.Papers
,Reviews
¯ Articles
,News
,Comment

6 AUUGN: The Journal of AUUG Inc,

Paper:

Why aren’t you
using mmap() yet?
Kevin Sheehan
Uniq Professional Services
PO Box 70 Paddington, NSW, 2021Aust.
<kevin @ uniq.com.au>

Abstract
Since the inclusion of the Virtual Memory (VM)
facilities in SunOS 4.0, the mmap () system call has
provided a powerful and very efficient alternative to
read() and wr±te () to access regular files.
Unfortunately; due to somewhat abstract and obscure
documentation, developers have not been making
great use of the interface.

With in inclusion of the VM facilities in SVR4, it is time
for developers to start using mmap () more often as the
preferred interface. It is no longer a Sun-specific
interface, and the benefits demonstrated on the Sun
platform will almost certainly apply to applications
used on other platforms.

mmap () provides many benefits. Ease of use is
certainly one, but the major benefit of using mmap () is
increased performance. This is partly due to the more
efficient use of system resources, partly due to the fact
the mmap () allows the application developer more
control over use of resources, and also that the system
can be given more information in how to deal with
those resources.

This paper is also intended to become an application
note supplementing the obscure documentation that
exists. In that spirit, this paper and the examples will
be made freely available. It is the author’s hope that
others will supply examples and comments to ease the
transition for those not yet fortunate enough to be
using mmap ().

A Brief Look at VM
Paging

In order to facilitate the concept of virtual memory and
demand paging, the address space of each process is
divided up into a number of fixed size pages. Each
process is assigned a particular memory management
unit (MMU) context in which to run. The job of the
MMU is to translate the references of virtual addresses
to physical addresses of one kind or another.

Paper: Why aren’t you using mmapO yet?

In order to have a process address space larger than
physical memory; the concept of virtual memory was
implemented. In this scheme, not all of the pages a
process is using need be mapped at one time. In order
to get access to a page that is not mapped, the process
references the unmapped page, and takes a "page
fault". This is a trap that tells the kernel that an
unmapped page has been referenced. The kernel
responds by checking to see that it is a valid reference,
and arranging for the proper contents to be mapped.
The process is then transparently restarted, seeing
nothing from the fault to the restart, hence the term
virtual memory.

In short, the process address space is treated as an
array of pages, each of which is associated with some
physical page. In the next two sections, we will discuss
how this was done in pre-VM systems, and how it is
now done under VM.

A topic that is well discussed in 4.3 BSD Unix [1] is
fetch, placement, and replacement policies. Fetch
policy is what determines when a page is loaded,
placement policy determines where you place a page,
and replacement policy determines when you select a
page to be replaced by another (when do I throw it
out?).

Pure demand paged systems typically fetch on
demand only (when a page is referenced), and
replacement is achieved by a Least Recently Used
.caching scheme that uses the working set as an
approximation to the optimal set of pages for each
process. These policies arise because the system
generally has no a priori information about page
usage. We’ll discuss the facilities that VM provides to
alleviate this shortcoming, but the author highly
recommends the above book for further reading by
those seriously interested in performance issues.

Classic Unix Memory Usage

In pre-VM UNIX, physical memory was divided into
two pools, one for the text and data pages, and another
(called the buffer pool or buffer cache) for file I/O. The
reasoning behind the buffer cache was that disks are
much slower than memory; and keeping recent file
blocks in core meant much less disk I/O. This meant
that processes doing read() and write() calls to regular
files had to deal with a (necessary) memory copy, but
for blocks used by more than one process, or used
more than once by a process, no I/O was done. The
only type of filesystem that UNIX had to deal with
was UFS, and the buffer cache was used for "block"
I/O devices, which typically meant disks.

February, 1996 7

Paper: Why aren’t you using mmaPO yet?

For a demand paged process (the only kind we
consider here) running the process caused the systems
to 1) allocate space on the swap/paging device (in a
virtual memory system, you have to put the page
someplace when it is not in memory) 2) copy the
appropriate pages to the paging device (in the case of
"pure" text programs, the text pages may have already
been on the device and another copy is not required)
and 3) loading some subset of those pages and starting
execution of the process. As time goes on, the process
will fault in pages it needs, and pages that are not
referenced will age and be replaced (written out to
swap if dirty and made available) if the system needs
physical memory.

Great, we have virtual memory; a demand paging
system that does a pretty good job of figuring out
which pages (on average) are needed, we’re caching
disk blocks to minimize I/O done to the disks. Can we
do better?

As UNIX grew from a time sharing system to meet the
needs of a diverse number of platforms, the pre-VM
facilities for mapping and management of the physical
memory pool no longer proved sufficient.

Perhaps the biggest problem from a performance point
of view was the static boundary between the buffer
cache and the text/data pages. For a system doing
large amounts of file I/O, the buffer cache is too small,
and the text/data pages go to waste. For a system that
needs many pages for text/data, the memory allocated
to the buffer cache is not available to ease the load.
More importantly, memory was being managed by
two separate and non-cooperating sub-systems.

The requirements of mapping devices such as frame
buffers were not well provided for - in order to map
that memory, an allocation of virtual address space
(backed by the swap device) was required, followed
by the replacement of that mapping by the physical
mapping to the device.

No method of interposing some action on the part of
various subsystems in response to a page fault was
provided, which meant that little or no management of
the objects being mapped was really possible.

But perhaps the most telling argument for the VM
rewrite was that the management of the mappings was
heavily machine dependent. When the only model
you have to worry about is the VAX or Sun2/3, that is

Process 1 Virtual

Process 2

Buffer Cache

Text/Data pages

Physical Memory

Physical Memory Usage in Pre-VM UNIX

8 AUUGN: The Journal of AUUG Inc.

Paper: Why aren’t you using mmapO yet?

one problem. When you have to start worrying about
multiple architectures, caches, I/O caches and the like
as well as the problem of many consumers of both
virtual and physical memory; unifying and abstracting
your management of virtual and physical memory
resources becomes imperative.

VM Model

Essentially; VM is an abstraction of the three levels
needed to manage the mapping from a process’ virtual
address space to a physical page. The three layers are
the Address Space (AS) Layer, the Segment (SEG)
Layer, and the Hardware Address Translation (HAT)
Layer.

The Address Space layer is responsible for managing
the allocation of the process virtual space, and keeping
track of the associations between the virtual addresses
and the objects underlying them. Each mapping
contains a virtual address, a length, the segment
involved in the mapping, and an offset within that
segment.

The segment layer is where the work of managing the
objects is done. Examples of segment types are vnodes
(the abstraction of files used in the Virtual File
System), generic device drivers (such as frame
buffers), and devices which require management of
the context associated with each mapping, such as
graphics accelerators.

The Hardware Address Translation layer is where the
machine dependent work of loading and unloading
mappings is done. Allocation of MMU resources,
cache consistency and the like happens here.

What does this buy us? Instead of having a page fault
routine that has to know everything about the possible
ways to fill in a page, the problem is now factored into
nice neat chunks. The address space operations
allocate and free associations with various types of
segment, and call the proper segment ops when a page
fault is encountered. The segment ops make sure the
proper page is prepared and calls the HAT layer to
load (or unload) a translation when appropriate. The
HAT layer handles all the grotty details of getting the
page mapped and consistent.

So instead of having to rewrite the page fault handler
to extend mapping facilities, all you have to do is
provide a new segment driver. Instead of
encapsulating knowledge of the mapping hardware
throughout the OS, the HAT layer handles it. With the
abstraction of the Virtual File System, only one driver
was needed for "regular" files, the segment driver for
vnodes

Simply put, mmap () is the interface that creates the
associations between the process address space and
various objects in the system. With the factoring of
functionality provided by VFS and VM, the range of
objects available for mapping is considerably
extended. In fact, rnmap () is now used extensively by

Address Space (Virtual Addresses)

Ass~

Se :nt (Object

segment,

Address Translation

Physical Memory
Another Bus (Framebuffer)

February, 1996 9

Paper: Why aren’t you using mmap() yet?

the system for management of resources in the lifetime
of a process.

In addition to the familiar read, write and execute
permissions that mmap () allows you to associate with
a page, there is the concept of shared and private
mappings. In a shared mapping, all mappings of a
particular object are shared. In other words, if two
different processes both map the same.page of an
object, they will have the same physical page mapped
in for both address spaces at some point. In a private
mapping, if the page is marked writable, the shared
copy is mapped in read-only. On the first write
reference to the page, an anonymous copy is made for
that address space to use privately. This is also known
as a Copy On Write (COW) mapping.

Since you are now able to explicitly manage your
address space with mmap (), it is now possible to give
the system more information about your usage of a
particular mapping with the madvise () system call. In
a classic demand paged system, the kernel knows
nothing about your pattern of access, and has no a
priori information about which pages you will or wont
need at any given time. Madvise provides for three
patterns of access to modify the fetch and replacement
policies, explicit notification of whether a range of
pages is needed or not, the ability to flush blocks back
to secondary storage synchronously or
asynchronously; and the facility to invalidate a
mapping (cause the pages to be re-read on next fault).

The three access patterns are normal, sequential and
random. The normal access pattern is to do read
ahead, i.e. to read page N+I when a page fault for
page N is received. This presumes that page N+I will
be needed soon, and that page N-1 (if it is valid) may
be needed and the resources should not be freed.
Sequential access does read ahead as well, but to also
do free behind. This assumes that page N+I will be
needed, but that page N-1 will not, and that the
resources from page N-1 will be needed soon. Random
access presumes nothing, i.e. it only fetches the page
required by the fault, and allows the LRU algorithm to
age pages as appropriate.

For cases where more explicit control is desired,
madvise provides WILLNEED and WONTNEED
advice. You can tell the system that a certain range of
pages will be needed, and it will attempt to make sure
they are available. When you no longer need them,
and want the system to start making them re-usable,
you simply tell it.

Msync () also allows you to explicitly flush pages
either asynchronously or synchronously if you need to

guarantee consistency without affecting the mapping.
It also allows you to invalidate the mapping without
undoing it if you with to reload the pages on the next
reference.

Combined, these facilities offer the application
developer a set of powerful tools to control the use of
system resources. Since everything is handled by a
page fault (or the simulation of a page fault) the
various segment operations that need physical
memory compete on an equal basis, and system
resources can in theory be optimally allocated.

Examples and Benefits
Let’s look at some examples of how the system and
various applications use mmap (), and the benefits
over the older techniques used.

Executables and Shared Libraries/Objects

As we saw in pre-VM UNIX, executables were loaded
onto the paging device and paged in from there. There
existed the possibility of sharing pure text, but all else
was copied over. In particular, all executables had to be
statically linked so they could be copied over, as no
provision for mapping for dynamic linking existed.

In post VM UNIX, the vnode associated with the
executable is simply mmap () ed Copy on Write, and
the uninitialized data is mapped COW to/dev/zero.
Let’s see what this means for the lifetime of an
executable called foo.

When you exec () foo, the system does a lot of what it
used to - find foo. The first difference is that it will be
dealing with a vnode, and not a collection of blocks in
a particular flavor of filesystem. A small run time
loader does two mma~ () calls. The first creates a
private mapping for the text and initialized data in the
executable. The second creates a private mapping for
the bss (uninitialized data) area to/dev/zero
(/dev/zero is a device that returns zeros when read or
mapped, as opposed to /dev/null, which returns
nothing).

At this point no I/O (other than the page needed to get
the exec header) has been done, so we have our first
advantage - we don’t need to copy the text or data to
the paging area on start-up. All we have is an
association and enough of the process actually in core
to start it running.

Let’s assume that it doesn’t write to the text pages, but
just faults them in as a result of fetches. In other words,
when we touch a new page in text, we take a page
fault, which calls the segment ops for vnodes, which
allocates a page, schedules I/O to fill the page from

10 AUUGN: The Journal of AUUG Inc.

the vnode, calls the HAT layer to load a translation,
and then restarts our process.

The advantage h6re is that the text need never appear
on the paging device, the pages can always be fetched
from the vnode.

What happens when we reference the data or bss
pages? If it is a read reference, the same thing happens
as for text. In other words, if we have a lot of read-only
data, we can read that out of the vnode as well, and
don’t need to have it on the paging device either. If it is
a write reference, then a private copy is made. We take
a page fault (either because it is unmapped, or because
it is mapped read-only at this point) and the system
notices that it is a write reference. The segment ops
allocate another page, and copy the contents of the
original page to it. This page is then "anonymous" i.e.
only we can ask for it, and it is now backed by the
paging device, not the vnode.

Well, not a huge advantage for written pages, but at
least the I/O is done when we need it, and the
previous savings apply.

Paper: Why aren’t you using mmapO yet?

What happens when we run another copy of foo? The
actions are the same, but the effects differ because
some of the pages are already in core, read-only and
sharable. When the vnode segment ops resolve the
page fault for the text pages (or read-only data pages)
they will find the pages already mapped in for fool.

Now we can see one of the major advantages of the
VM approach - data will be shared by different
processes whenever possible. We don’t have to keep a
sticky bit and clog up the paging device, we just re-
map a page when we can. The segment ops look up a
page in physical memory by vnode and offset (where
appropriate) and simply map it into another process
address space.

If we can share pages in an executable, can we find a
way to share things that every process in the system is
likely to use? Yes, if we can map one executable into a
process space and share portions, then it is a
straightforward step to map another executable into
the same address space. This is exactly the mechanism
that SunOS 4.x and SVR4 use to implement shared
libraries and shared objects.

Read Only/Shared Private

foo 1 Virt.

Phys. Mem

Two processes sharing pages.

foo2 Virt.

Two processes sharing pages and
multiple text/data/bss mappings.

~ foo
text/data/bss

libc.a

text/data/bss

fool Virt.

Phys. Mem

foo2 Virt.

February, 1996 11

Paper: Why aren’t you using mmaPO yet?

In this figure you can see that a process address space
can be made up of multiple text, data, and bss
segments. Ins.tead of one each all lumped together,
dynamic linking allows libraries and objects to be
mapped and resolved as needed. More importantly; it
allows common pages like library text to be shared
among all processes, significantly reducing the
amount of required memory resources.

Another huge advantage to dynamic linking and
shared objects is that since the object is not linked
statically into the executable, you can change it
without relinking. In the case of libraries, it means
developers can release and distribute portions of the
product instead of doing full releases.

As an example, picture a C++ class implemented as a
shared object. If you update the implementation of the
class, but do not change the class definition, you only
need to release the new class implementation, not your
whole application.

Reading Files

Now that we have a rough idea of how VM works, and
how it benefits the system, let’s take a look at how the
facilities can be used by the application developer. The
simplest example is reading a file. We’ll use a small
read by one process to see how read () differs from
mapping a file, then look at the benefits for large reads,
and more than one process using a file.

While the system does not have a pre-allocated
portion of physical memory in which to store
filesystem I/O, it uses a similar technique as before to
perform reads to user buffers. Assume that we are
reading the first 10 bytes from a file. The system first
simulates a page fault, which allocates a page and

does the disk I/O in order to get the required disk
blocks into memory., then makes sure that the portion
of your process space that contains the buffer is in
memory, then it copies the requested bytes into that
memory. The resources consumed are two pages of
memory (one of which is now dirty and may need to
be written out), the space on the paging device to back
the private page for the process, an I/O operation to
get the filesystem block into memory., and a copy to
move the info from one page to the other. We haven’t
even looked at the data yet...

Now let’s use mmap () to get to the same 10 bytes.
When we call mmap (), no I/O or allocation is done, all
that happens is a record is made at the Address Space
level of the association between a virtual address
(which the system typically picks) and the vnode and
offset (which in this case is 0). When we reference
those 10 bytes for the first time, we generate a page
fault, the same one that was simulated in the read()
example. The system allocates a page, does the I/O,
but instead of copying the data to our buffer, it maps
the block used directly to our process address space.
The resources consumed are one page of memory (and
not dirty; so no further I/O is necessary) and one I/O
operation. Half as much memory; half as much disk,
and no copying.

Now let’s take a look at what happens for a larger file.
Let’s assume that we are looking at a 2 MB file. When
the read() is issued, the system has to allocate the
pages for the file systems blocks, and do the I/O, then
allocate pages for the private copy of the file, and copy
the pages over. 2 MB of (in this example) useless
pages, 2 MB of dirty pages, a big chunk of I/O, and we
haven’t even started yet. In this case the dirty pages in

Process Address Space

Filesystem block

Y~uffer

Copy

Physical Memory

page

read()

12 AUUGN: The Journal of AUUG Inc.

Paper: Why aren’t you using mmapO yet?

Process Address Space

Filesystem bl~

L~~ping of Block

Physical Memory

mmapO

the process address space are likely to be written back
to disk, creating further I/O.

For mmap (), the association is made, and no I/O is
done. As each page is referenced, a page fault is taken,
a page is allocated, and the required I/O is done when
needed (actually, in the normal case, read-ahead
would halve the fault rate). Instead of a glut of I/O,
and twice as much memory and disk consumed, we
have used exactly what was needed when it was
needed.

As a further example, image the case of a file half the
size of physical memory or larger. For read(), by the
time we are done we have used twice as much
memory as needed, so the pages we probably want at
the beginning are guaranteed to be out of memorY, and
will have to be read in again. For mmap (), references
to the page we want cause it fault into memory as we
need it. Consider a huge file - mmap () doesn’t need
the backing of swap for the private copy; so as long as
the file exists, and we have enough address space, the
file can be mapped. For read (), we need as much
swap as there is file, and this only to read the fil!!

Now add multiple processes all using the file. For
read(), we have each process needing a copy of the
private pages, all the I/O done for the pages up front
(to be fair, if the page is already in memory from
another page fault, just the copy is done) memory to
memory copies done for each of the processes, and
swap allocated to cover all those pages. In other
words, for N processes, we increase the system
resource usage 2*N times.

For mmap (), since the mapping looks directly for the
page allocated by the segment layer, the pages are
shared once the I/O is done. If every process is using
the same pages at the same time, there is only one

copy in memory; and no swap backing it. In other
words, the worst case for mmap () is I copy on disk
(the original) and 1 copy in memory.

The cases for programs that read a file, modify it, and
then write it back are even more striking. In addition
to the work done to read the file, the whole file has to
be doubly paged again to write it back as well! For
mmap (), the original pages can be modified, resulting
in exactly the amount of work that needs to be done on
the pages.

The write only case is closer to the read only case - one
copy of the file is in core, one copy of the file takes up
disk space.

Last but not least, the user has no control over what
the system does with the pages in their address space.
With an mmap () ed file, you can use the facilities of
madvise () and msync () to manage the resources, and
give the system all the information it needs to manage
optimally on your behalf.

Less filling, tastes great - why aren’t you using
mmap () yet?

Cp and Cat

A good example of mmap () used to improve a simple
program is the method cat and cp now use for input. If
a file can be mmap () ed, both these programs will do
so. What this means is that no user pages need be
dirtied in order to do the I/O. When the mmap () is
done, only the association is made for the process.
When the write () call is issued to the output file, the
kernel allocates the necessary pages to read the file in,
and then does the write directly from there, halving
the memory usage, eliminating an unecessary copy of
the data to user space and the use of swap backed
private memory.

February, 1996 13

Paper: Why aren’t you using mmaPO yet?

In the trivial case of "cp x /dev/null" or "cat foo

>/dev/null", no I/O is done at all. The association is
made (no I/O is performed) and then the write to
/dev/null does nothing (in particular, it does not
request the pages to be read in). While some consider
this cheating, I’d submit that it is simply doing what it
has been told to do - nothing.

Examples
map_fileO and make_fileO

The steps needed to map a file are 1) open the file 2)
find the length of the file 3) mmap () the file and 4)
close the file descriptor. There is no need to keep an
open file descriptor for a mapping, which is very
convenient for applications using many files.

In these two examples, we assume that the file is
smaller than the address space, and map the whole file
for use. For most applications, this is a reasonable
assumption. For applications such as cp and cat, a
more general method of mapping a chunk at a time is
necessary.

struct mapping (

void *addr;
unsigned long len;

);
void *
map_file (mapping, name, permit)

struct mapping *mapping;

char *name ;
int permit;

struct stat s;
void *p = 0;

int fd, prot;

u_long len;

if ((fd = open(name, permit)) < 0)

fprintf(stderr, "open of %s failed (%s)\n",
name, sys_errlist[errno]);

return (p);

) else if (fstat(fd, &s)) {
fprintf(stderr, "star of %s failed (%s)kn",

name, sys_errlist[errno]);

) else {
if (permit == O_RDWR) prot = PRoT_READ

PROT_WRITE;

else if (permit == O_WRONLY) prot =
PROT_WRITE;

else prot = PROT_READ;

if ((p =

(void *) mmap(0, len, prot, MAP_SHARED, fd,
0)) == (void *) -i) {

fprintf(stderr,

"mmap of %s failed (%s)kn", name,
sys_errlist[errno]);

p = 0;

)
}
close (fd) ;

if (mapping)

mapping->addr = p;

mapping->len = s.st_size;

)
return (p);

The mapping structure can be used to record the
length of the file. If a null pointer is passed in for the
structure, the routine just hands back the address of
the mapping. If no mapping is performed, then a null
pointer is returned, map_file () uses the file
permissions from the open () system call declarations -
this was an aid to the original conversion for which
this routine was written, it should probably use the
flags that mmap () uses for specifying the protection
desired. You will also note that this routine uses
void * as a generic pointer, where mmap () is declared
as returning char * (caddr_t). Another routine
caught in the ANSI C transition.

It is not difficult to create a file using mmap (), as the
following (very similar) routine shows. It is important
to note that no allocation of disk space is done until a
given page is written, so there is no penalty for
creating a huge file to map, and then making it smaller
with truncate () once the final size is known.

void *
make_file(name, len)

char *name;

int len;

void *bits = 0;

int fd;

if ((fd = open(name, O_RDWR I O_CREAT, 0666)) <
0) (

fprintf(stderr, ~make_file failed for %s
(%s)\n",

name, sys_errlist[errno]);

) else if (ftruncate(fd, len)) {
fprintf(stderr, ~sizing failed for %s

(%s)\n",
name, sys_errlist[errno]);

} else {

len = (len + getpagesize() - i) &
-(getpagesize() - i);

if ((bits =
(void *) mmap(0, len, PROT_READ I

PROT_WRITE,

MAP_SHARED, fd, 0)) == (void *) -i) {
fprintf(stderr, "mmap failed for %s (%s)kn",

name, sys_errlist[errno]);

bits = 0;

}
)

14 AUUGN: The Journal of AUUG Inc.

close (fd) ;

return (bits) ;

The size of the mapping is rounded up to the machine
page size, but this doe not change the size of the file. If
a page fault occurs at the end, and the offset is not
beyond the real size of the file, the page fault succeeds,
and a whole page with the end portion is mapped. If a
page fault sees an access beyond the real end, a
segmentation violation is signalled.

Simple cp

A simple copy program Using the above routines
would then be something like this:

main(int argc, char **argv)

int fd;
struct mapping in;

/* check arguments */

if ((fd = open(argv[2], O_WRONLY, 0666)) < 0) {

/* error processing for write side */
else if (!map_file(&in, argv[2], O_RDONLY)) {

/* error processing for read side */

else if (write(fd, m.addr, m.len) != m.len) (

/* error processing for copy */

}

}

In the above example, the pages will not be read in
until the write () call asks that the pages be read in as
part of I/O. More importantly; no user pages are
dirtied. Also, all of the I/O will be done in the kernel,
allowing it to choose the optimal size chunk, instead of
making the application decide on a buffer size.

Accounting Summary

As another example of an application reading a file
more efficiently; let’s look at a quick accounting
summary. The accounting file (typically/var/adm/
pacct) is organized as a series of 32 byte fixed length
records as defined in/usr/include/sys/acct, h. For
our example, the sum of all characters transferred will
be computed, ctoi () is a routine that converts
between the comp_t format used by accounting to an
integer.

main(int argc, char **argv)

struct mapping af;

struct acct *ap;

u_longnap, nchars = 0;

char *filename = (argc >
adm/pacct";

i) ? argv[l] : "/var/

Paper: Why aren’t you using mmapO yet?

if (!!map_file(&af, filename,

/* error processing */

exit(l);

}
ap = (struct acct *)af.addr;

nap = af.len/sizeof(*ap);

while(nap--)

nchars += ctoi(ap->ac_io);

ap++;

}
printf(’%d\n", nchars);

exit(0);

O_RDONLY)) (

The equivalent example using read () and fstat ()

would read the records one at a time into a private
copy or read the entire file into an allocated array of
acct structs. The advantage of mapping the file in the
first case is that no read () calls are done - on a
machine with a 4K pagesize, this eliminates 128
system calls and copies per page. In the second case, as
we have seen before, we eliminate reading the entire
file at once and the swap backed private pages used to
hold our copy.

Read Modify Write

We’ve seen the advantages for simple reader
programs, let’s look at an application that does an in-
place modification of data. In this example, lets
assume we have an 8-bit pseudo-color Sun rasterfile
with a ramp in gray; and we want to make it a bit
brighter We will assume that the rasterfile header
correctly describes the size of the file. In practice, an
application should check this assumption, otherwise
accesses to invalid parts of the mapping could create
segmentation violations.

main(int argc, char **argv)

u_char *p;/* pointer to pixels */

u_char pixel;/* pixel value */

struct rasterfile *rp;/* pointer to raster
header */

u_longsize;

/* check arguments */

if (! (p = (u_char *) map_file((struct mapping
*)0, argv[l], O_RDWR))) (

/* error processing */

}
rp = (struct rasterfile *)p;/* pointer to

raster header */

/* check raster header */

p += ((sizeof(*rp) + rp->ras_maplength);/*
skip header and cmap */

size = rp->ras_width * rp->ras_height;

while(size--) {
pixel = *p;

February, 1996 15

Paper: Why aren’t you using mmapO yet?

ii (pixel

else p++;

)
exit(O);

!= 255) *p++ = ++pixel;

Fortunately; this is not a paper on C programming or
image enhancment : -) Let’s look at the benefits of an
in-place mapping for applications that do read-
modify-write. Using the normal malloc ()/read () /
process/write () model, we would have to read the
whole file into a private copy. This would dirty our
swap backed private pages and cause all of the file I/O
to be done at once. We then have to manipulate that
copy; and write it back, causing all of our private pages
and all of the file pages to be loaded one more time.
Two memory copies, use of a swap copy; and two
complete runs thru the file.

For the mapped version, we access the pages actually
used by the file, so no private copy is required, the
system is far more likely to be able to keep the pages in
memory, and when we are done, the actual pages that
comprise the file have already been modified, so no
write is necessary. The pages will age as appropriate
and be written when necessary.

Large and Huge Files

Presuming that the previous example was a typical
1152x900 rasterfile, we were only dealing with
approximately 1MB worth of data. What if the size of
the file approaches the size of physical memory? What
if it exceeds it? What if it exceeds the size of available
swap space?

As already noted, using read () and write ()

presumes that the file pages will be read in and copied
to or from a private copy. When the size of the desired
manipulation starts approaching half of physical.
memory; read ()/write () applications will start to
"turn the bend" in performance, because the limiting
factor will be disk I/O as the system will be bound by
the paging rate - and this happens before you access
the data. For a mapped application, the bend is at
worst about the size of physical memory; and
depending on how fast an application moves thru the
pages, it may never become paging limited.

As the size of the chunk goes beyond physical
memory; the read () /write () application still has to
thrash thru the whole file before accessing the first
byte, where the mapped application is still in the same
situation as before - pages are drawn in as needed, and
with use of madvise (), the application can help the
system do exactly the right thing.

As the size of the chunk approaches the size of the
swap device, the read () /write (). application has to
break up the problem into smaller chunks, and it is
using a somewhat precious system resource (and
presumably I/O bandwidth) to do so. The mapped
application needs no backing from swap, so the first
limit it runs into is the size of the virtual address space.

It was in fact the manipulation of large image files that
first led the author to use mmap (). The benefits in
performance for 1MB files is noticeable. When you are
dealing with 225MB files, the path quickly becomes
obvious.

Xlmages

A brief note here - most raster display formats can be
described by XImage with the right settings. It is a big
performance win (especially in systems like Sun that
have a Direct X interface) to mmap () the image data,
and use a pointer to the mapping in the XImage
structure instead of reading a private copy. A recent
animation example showed a 6X performance
enhancment using mmap () to access all the data, and
just switching the pointer instead of reading different
files all the time...

Shared Data as Memory

The benefits of sharing pages being used by many
cooperating processes has been discussed earlier in
this paper. An interesting application for mmap () is
that of using a commonly mapped file as shared
memory.In addition to the simpler interface and the
benefits of being able to rendezvous using the file
system namespace, the model has some less obvious
benefits as well when file locking is used.

As an example, consider a print spooler that has to
process files in an input queue, and then move the
processed files to an output queue to be processed by
an output manager. RPC calls could be used to move
the files about, but in a resilient system, the
information must be kept around in order to restart the
jobs.

The input queue would have a header describing the
number of entries, the next free slot in the table, and
the output queue would have the same. Manipulation
of the queue entries can be accomplished by a
common set of routines. Before updating an entry, the
routines would acquire a write lock using the flock()
system call (this allows a portion of the file to be
locked) in order to make the access atomic. When
information from the file is read, a read lock is
acquired. If another process is in the midst of writing
or reading that portion of the file, then competing

16 AUUGN: The Journal of AUUG Inc.

process will block. If non-exclusive access (such as two
reads) is attempted, both processes will succeed.

The processes share the data (which can be extensive),
there is effectively no limit of the size of the shared
memory that can be used, and the files can use
advisory locking to guarantee atomic access to the file
contents. The programming model is that of shared
memory4 instead of having to read () and write ()
entries as well as performing locking.

In the author’s experience, mapping files as shared
data is much easier, much more extensible in size, and
more efficient (when you consider the control that
flock () and madvise () give you over the file) than
using shared memory and/or semaphores.

Shared Objects

We’ve discussed the implementation of shared
libraries and objects before, but it is a small step from
using shared data with mmap () to using shared objects
as well. The point to be made here is that with the
benefits of access methods and data hiding provided
by languages such as C++, classes can use mmap () in
their implementation for performance, and the
application programmer need never know.

Caveats
While VM and the facilities it provides have a number
of advantages, there are some caveats to consider.

The first is that mmap () won’t work on stream based
files such as sockets and pipes, so applications that
have to deal with these will have to have a separate
access method. It is worth considering re-writing the
application to useregular files. As an example, image
processing systems that use a series of filters to effect
transformations might better be implemented as
routines that mmap () (possibly temporary) files in
order to eliminate the private pages and better control
use of memory. In some cases, it just isn’t possible.

The second is the use of NFS files for mapping. NFS
files will mmap (), but only if file locking (using
lockf () or fcntl ()) is not being used. The typical
way to get around this is to use a secondary file for the
locking, and mmap () the original. Use of msync () to
guarantee that you have a coherent copy in conjuction
with ancillary locking works, but is obviously not as
easy as mapping UFS files locally. It is also worth
noting that network locks are slower than flock (),
and have been known to have the odd problem.

The last caveat is that you are using a new method of
access for files. You will make mistakes, and there will
be some differences in the way the system behaves.

Paper: Why aren’t you using mmapO yet?

You’ll notice update more often (consider tuming it off
for large numbers of written pages running a long
time), you’ll get core dumps with addresses in strange
places, you’ll forget the offset parameter, you’ll forget
to use both PROT_READ and PROT_WRITE, you’ll forget
to open the file with the right permissions. Be patient,
it’s worth it.

Summary
VM and the mmap () and madvise () facilities are
generally much more efficient and allow you to give
the paging system explicit information on how to deal
with the use of memory for applications. It is present
in SVR4, which means it can no longer be considered a
SunOS specific interface.

Examples of all the applications mentioned above are
available, as well as electronic copies of this paper. The
documentation for mmap () has never been extensive,
but it is the hope of the author that this paper will be
the start of a communal application note, and that the
examples made available will come back to form a
good toolkit for those seeking to move quickly to
mmap ().

With all the advantages, I can only ask: Why aren’t you
using mmap () yet?

References
Leffier, McKusick, Karels, Quarterman; The Design and
Implementation of the 4.3BSD Operating System, Addison
Wesley; ISBN 0-201-06196-1 (1989)

Gingell, Moran, Shannon; Virtual Memory Architecture
in SunOS, USENIX Association Conference
Proceedings, pp 81-94, (1987)

February, 1996 17

Where do system administrators go
for workarounds, tips and tricks and

networking solutions!

I n a word, O’Reilly. You won’t find

a more authoritative source of

information on system and network

administration. Why? We tell it like it is,

thanks to experts like Aeleen

Frisch, Brent Chapman and

Gene Spafford.

You’ll learn the

nuts and bolts of

UNIX administration

and security. And we’ll

keep you up-to-date on

the latest technology and

industry trends.

i!

If you’re like most sys admins,

Internet administration is taking

up more and more of your time.

That’s why you should check

out the O’Reilly networking

classics shown here. And don’t

forget the second edition of our

Classic Essential System

Administration. For detailed

information about all of our

books and software products,

check out

httpd/www.ora.com/

When ordering please refer to code ASYS

BIND

Explains motivation
behind DNS and how to

set up the BIND software.
More advanced topics

such as how to become a
"parent" are also covered.

418 pages $59.95
ISBN:1565920104

sendmail

Introduces you to the Far away the most How to set up Internet
care and feeding of UNIX comprehensive book on servers and become a
systems in the real.world, sendmail. Includes a publisher on the Net.

New edition has been complete tutorial.
updated to reflect latest 668 pages $59.95

versions of all major 830 pages $65.00 ISBN: 1565920627
UNIX variants. ISBN: 1565920562

788 pages $65.00
ISBN:1565921275

Available from your local bookshop.

TCP/IP

Complete guide to setting
up and running a TCP/1P
network. Includes basic

setup and how to
configure important

network applications.

502 pages $59.95
ISBN:093717582X

Distributed by Woodsla.c I’ty I,td.
Unit 7/5 Vuko Place Warriewood NSW 2102
Phone ((12) 997(I 5111 Fax (02) 9970 5002 O’REILLY

Advice: A Moving Story

Advice:

A Moving Story
Andrew van der Stock

Moving offices happens to everybody sooner or later.
If you happen to be part of the Systems
Administration area, your role in any move is more
important than ever before. It is vital that you are
involved in every stage of any office move. Moves are
also a great oppurtunity to revitalise your network
and your unit’s image - if you do it right.

It’s vital to plan your move - this cannot be stressed
highly enough. You should be involved in the selection
of new offices, ensuring that sufficient data and phone
points are available to staff, and that any machine
room resources you need are adequate. There is no
point moving into a shiny new office if your legacy
servers cannot be installed because they do not fit
through the door! Think about climate control, data
risers, hub positioning, cabling contractors and so on,
even before you have selected the building. If you
don’t have the expertise, don’t be afraid to use
consultants, as you have to live with the results for
years to come.

Moving is an ideal time to totally redraw your
network, installing modem switches, changing from
coax to 10Base-T cabling, and so on. You should work
out-how to re-partition your network based upon real
life statistics, so start collecting the traffic data now.
You should also take into account a great number of
users are mobile not only in terms of equipment but
also in terms of job description. They may work in one
department three days a week, and another two days a
week. Do not build in dependancies that assume a
locked down desktop workstation.

After the building is chosen, get cabling contractors or
in-house expertise to wire the entire place as the office
is being outfitted. Work with the building electricians -
the result will be much cleaner port placement, and
much less cross-talk between your data and the power
runs. Ensure that the cable contractor tests each and
every port and cable run, and that they supply the
cables - this will reduce the heartache of being
bounced between two competing contractors when the
cables don’t work in real life. Get the climate control in
your machine room installed and tested to your
satisfaction before installing a single piece of
equipment. Once you are happy with the machine
room, it’s probably worth moving your legacy servers
in staged moves. You’ll need to set up a WAN link, as
the risk in moving, the servers at the same time as
everyone else is just too high.

The icky bit is more than likely the packing and
unpacking of workstations. There are far more
workstations than servers, and more than likely your
group will be called on to do the dirty work. To trick
here is to minimise the dirty work, whilst still
remaining in control of the process. Hire computer
movers, who know how to pack a workstation and
transport it in one piece. Let the user decide where
they want their workstation placed before the move
even takes place - so that desks and the workstation
are placed in offices in the correct place to start with.
Users can waste an extraordinary amount of time
moving a workstation around if you let them. Figure
out which users are going to be affected by sun-glare
and make suggestions before they move. If new
furniture is being bought, stipulate that the office
furniture must not have full backs, and have ports
already pre-drilled for cabling. Full backed furniture
makes it impossible for the desk to moved flush to the
wall, and stops you from plugging the phone and
workstation in.

It is essential that you under-promise and over-deliver
during moves. Do not promise that everything will be
working from day-one - a very career limiting move.
Make sure that you have adequate staff for the move -
do not allow holidays or training to fall during the
move. Make sure that you have the authority to pay
extensive overtime to ensure that you have enough
staff to handle the weekends before and after the
move.Talk to other section heads to ensure their staff
don’t take rostered days off in the aftermath of the
move - you need them to find stuff in their boxes and
to prove to them that you do indeed work hard -
image is everything, especially if you don’t visit the
users all that often.

If you have planned well, the workstations will be in
the new building and you’ll need to pop around to
each and every one and get it going. It is very hard to
justify coming to each and every workstation all the
time, so if you moved the servers previously, this is the
last time that you need to come by and reconfigure
workstations. It is very worthwhile making sure that
the asset register is accurate, and that equipment is
properly secured during this phase. Moving can be a
very trying experience (trust me on this one :), but if
you do it right and in a timely fashion, the rewards
will be well deserved. Moving can help improve your
group’s image with the users, as they finally get to see
your group in action, and management finally realise
that your group is very important in the day to day
operations of their company. Keep this in mind,
especially if your company doesn’t have a CIO (or
equivalent) yet. :-).~o

February, 1996 19

Background: Linux - The Choice of a New Generation

Background:

Linux - The Choice of a
New Generation
Frank Crawford

UNIX has long been known as a system that could
handle data from almost anything, including non-
Unix systems. For example, the ability to translate
EBCDIC to ASCII or blocked records to unblocked
records. Much of this is because Unix has long been an
excellent development platform and programmers
have been keen to transfer to from other systems.

Today; Linux is extending that interoperability to
modem systems, such as DOS, Windows95, NT and
MacOS. In fact this interoperability goes much further
than was previously considered. Certainly; the
functionality supplied is not unique to Linux, many of
the individual packages are also available in other
versions of Unix, but Linux has a wider range than any
other.

The reason for this is fairly simple, many of the
packages require changes to the operating system, and
the availability of the kernel source for Linux provides
ample opportunity for this to occur. The only
commercial operating system that approaches Linux
in this area, is SunOS 4.1.X, mainly due to its large
penetration in the Unix market place, particularly in
organisations developing applications. It is interesting
that the other free Unix’s, such as FreeBSD and
NetBSD, are also well represented by such packages.

The packages available cover a wide range of areas,
starting from simple data format translation, which
includes facilities to manipulate DOS floppy disks and
files and to translate between DOS and Unix format
text files as a standard produce. For more seamless use
of DOS data, there is the "msdos" file system, which
allows Linux to directly access, or mount, a DOS
partition and treat it like a normal Linux file. In fact,
most Linux systems automatically mount the DOS C-
Drive (if present) as part of their standard startup.

Seamlessly accessing data is one side of
interoperability, running DOS programs is another.
The freely available package, dosemu, being
developed for Linux allows most DOS programs to be
executed directly under Linux. This package goes so
far as to even support IPX and CDROM access, and
allows DOS programs to be run in a separate X
window. Obviously; this is only for occasional use, as
heavy use of DOS programs will always be more
efficient under native DOS.

For those who aren’t satisfied with just DOS, work is
underway to allow dosemu to support MS-Windows
3.1. While this is in it’s infancy; it is possible to run
simple applications, such as calendar, at the present
time.

A "rival" group is also working on adding support for
MS-Windows to Linux. However, this project is taking
the WABI approach, i.e. translating the Windows ABI
to Xll calls. While this also is in its early stages, it can
currently handle more advanced programs like
"solitaire".

Another major package available for Linux is SAMBA,
which performs the same functions as LanManager to
support the SMB protocol. This is the same protocol as
supported by Windows for Workgroups and
Windows95, for sharing files and printers over the
network. SAMBA allows the Linux system to export
its file systems and printers for use by Windows PC,
and also to access printers and file systems shared by
Windows PCs. Support includes network login and
authentication, and even allows the use of NT servers.
In fact, SAMBA highlighted some problems with
Microsoft’s implementation of network logins, which
they subsequently fixed.

To round out the interoperability with NT, Linux also
supports the hpfs in a read-only mode. Again, this has
caused some concerns for NT, as it is possible to set up
a Linux boot disk with the hpfs file system enabled,
boot an NT server and read files, bypassing NT’s
normal security. This is just another example of the old
security adage, that once you have physical access to a
machine you can do anything to it.

Linux access isn’t restricted to Microsoft products,
there are also numerous packages available for
MacOS. For a start there is a module available for
mounting, in read-only mode, MacOS file systems. As
well, there are other packages to handle MacOS
specific data formats such as binhex.

Going further, packages are also available for
supporting Macintosh file and printer sharing. There
are two common packages, CAP and netatalk. Both
provide similar functionality, although netatalk is
more closely tied to Linux, as the kernel modules
required are now being distributed as a part of the
development kernel (Linux 1.3.X)..Both these packages
allow Linux file systems to be exported to Macintosh
systems, and for printers on either the Linux or
Macintosh system to be used across the network.

With this wealth of tools, it is simple to set up an
environment that will support Macintosh’s, DOS and
Windows systems, all communicating through a
common server, without having to resort to expensive
third-party packages. All you need is a Linux system
and someone who knows how to use it.o$¯

20 AUUGN: The Journal of AUUG Inc.

Opinion: Will the real Information SuperHighway please stand

Opinion:

Will the real
Information
SuperHighway please
stand up!
Phil McCrea

I never cease to be fascinated by the numbers
emanating from the Optus Vision and Foxtel public
relations offices concerning how many homes their
respective cables have now past - Foxtel in the ground,
and Optus Vision strung from pole to pole. And the
amount of column inches this all receives in the
business press: hardly an issue goes by without a
feature article on pay TV.

Telstra and Optus seem convinced that Australians
will rush headlong into pay TV, much in the same way
as we have rushed into portable telephones over the
past few years. It is unlikely that this writer will
succumb to the temptation of pay TV, as long as we
have quality programming on ABC and SBS. (Mind
you, if it transpires that the game they play in heaven -
rugby union - were to be available only on pay TV, this
policy may have to be re-considered...)

What I object to is the notion that Foxtel and Optus
Vision are in some way bringing us the ’Information
Super-highway’ by means of their cable. Have you
noticed that people who use terms such as the dreaded
ISH generally do not understand the concept of on-
line services? - and probably have never gone near a
keyboard in their lives. The ISH is not recycled
television programs available at the drop of a hat (or
smart-card for that matter). The ISH - if we can use the
term - is about interaction, and furthermore we mean
symmetrical (or near symmetrical) interaction, where
the forward and return data paths are of similar
carrying capacity. In other words, a user of the ISH can
create as much information as (s)he receives.

Let’s drop the term ISH, and use the more appropriate
term ’Internet’ - after all the Internet is by far the
closest thing we have at present to a real ISH. Problem
is, the term Internet strikes fear in the over 45s, who
were brought up before keyboards became prolific.
Given that most people in this age range know how to
watch TV, but not how to use computers, it is not
difficult to see why our communications companies

are outlaying such a huge investment in pay TV
infrastructure.

I’m being a little cynical, I know, but it is certainly true
to say that the cable layers did not envisage the
increased popularity of the World Wide Web, which is
being delivered over narrow band - ie telephone lines-
rather than over cable. Whilst the data capacity of
telephones is not as high as cables, it can be quite
acceptable for many business applications. Data rates
are 28.8kbits using current technology modems,
although ISDN can provide 128Kbits over the same
telephone lines, using an all-digital approach which
does not require modems at all (recall that modems
modulate and de-modulate - hence the name - from
analogue to digital and vice-versa).

The ISDN rate of 128K is more than adequate for most
Web services that are currently used by business. And
furthermore ISDN uses the current
telecommunications infrastructure. Several years ago
Australia was a leader in adopting ISDN, bu~ sadly we
have lost this lead. This can partly be attributed to the
pricing policy for ISDN, which has placed it outside
the reach of most organisafions - and certainly homes.

Telephone lines are the primary means of
communications for business for both voice and data -
not coax cables. We can even send letters over
telephone lines using facsimile machines. Web
delivery over ISDN is not only possible, it is
achievable right now.

So what is our Government-owned
telecommunications company doing to encourage
Australian industry to use the Internet for competitive
advantage? If the price of ISDN is the main guide, then
not a lot. Rolling out cable for television-watching
armchair norms at home should not be a priority for
our government-owned telecommunications
company.

AUUG is committed to the view that IP based
networks (ie the Intemet) will become the default
communications protocol for all on-line services. We
cannot afford to wait for several years till cables
appear behind every PC in the countr~ both at home
and in the office. Let us use our existing infrastructure
- i.e., telephone lines - more effectively for on-line
services in the short to medium term. It’s time to
reduce the price of ISDN significantly - i.e., by an order
of magnitude. Business will be given an almighty
boost as a result.,;,

February, 1996 21

New edition of
one of our
bestselling

UNIX books
now

completely
revised &
updated.

UNIX
FOR THE

IHPATIENT
Second Edition

Paul Abr~ams and
Bruce Larson

0-201-823 76-4
650 pages/Paperback

20% off for
AUUG

members

Clear, concise, and readable. Thoroughly
cross-referenced and indexed, UNIX for
the Impatient is the power-useffs guide to
mastering UNIX quickly.

Organized functionally and useful for any UNIX implementation on any platform,
including System V, BSD, LINUX, Solaris, POSIt2, ULTRIX, UNIXWARE (Novell),
and others.

Covers all essential information including:
¯ File operations
¯ Data manipulation using filters
¯ The awk programming language
¯ Shells and shell scripts, now using the KomShell
¯ Editors -- vi, ex, ed, and GNU Emacs
¯ Mailers, remote addressing, telnet, tip, uucp, WWW, other Intemet issues
¯ GUIs, including X Windows

I would like to order~ copy/copies of UNIX for the Impatient by Paul Abrahams and Bruce Larson (82376-4) at

the special AUUG price of $35.95 (RRP $44.95)

Q I enclose a cheque for $

1~1 BANKCARD 1~1 VISA

EXPIRY DATE: / /

NAME:

STREET ADDRESS:

OR ~ Please charge my credit card No:

I~1 MASTERCARD

AUUG MEMBERSHIP NO:

AMERICAN EXPRESS I ID No:

PHONE NO:

SIGNATURE:

(WK H~s)

STATE: POST CODE:

Addison
Wesley

Eongman

Unit A1, 6 Byfield Street,
North Ryde, NSW 2113, Australia.
Telephone (02) 878 5411
Customer Service Fax (02) 888 9404

~ LONGMAN

ADDISON-WESLEY

Background: What is a Network?

Background:

What is a Network?
Frank Crawford

The only thing that matters in a network is the
bandwidth, right? After all the only thing that matters
is getting the data from place A to place B as fast as
possible. This is the attitude that is taken with regard
to the Australian Intemet, and is also taken by most
organisations for the internal networks. Unfortunately;
it is very wrong and can lead to disastrous and
expensive mistakes.

As an example, at a recent conference I stated that the
Intemet in Australia will probably have a very rocky
road in the next six to twelve months, and was
promptly told that an increase in bandwidth would fix
it. However, I didn’t see the problems being with the
current bandwidth, but with the current
administrative procedures and network management.
This is not to say that Telstra Intemet Services are at
fault, they just aren’t responsible for all the details.

As a different example, I was recently discussing how
to speed up a network backup and the immediate
reaction was that we should replace the Ethemet
connection with an FDDI connection. This statement
was made with no evidence or even thought as to
where the bottlenecks might be. Just as an aside, I
believe that the major problem is with the software
configuration and not with any network performance,
however, I’ll wait for some performance statistics
before looking for a solution.

So what does constitute a network? Obviously; the
most visible component is the cable plant, whether it
be your local Ethemet or fibre cables, or leased
bandwidth from Telstra. To make use of this plant are
the devices to access it, be it cards in a PC, high speed
routers (which also perform other functions) or an
ISDN NTU. This is just the start, there are also bridges,
splitters, repeaters and a myriad of other hardware
components, all of which are visible.

However, more and more these days, much of what is
needed for the network is not visible. Like everything
else, much of any network is driven by software, from
simple things like PC card configuration programs to
dedicated specialist operating systems such as found
in CISCO routers. This software is an integral part of
any network, as without it all you have is some
electrically connected devices with no purpose.

Much of the software is also expected to perform a
wide variety of functions, from selecting the next path
for data to traverse, to splitting, join or reformatting
data to conform to requirements for the next step and

on to updating other devices on current best routes
and possible destinations for data packets.

At the layer above this you reach more abstract but no
less important items. This includes things like names
to address mappings, such as performed by DNS and
Novell’s NDS but also mapping of IP addresses to
Ethemet addresses. Without these type of services
again no network would exist, as it would be
impossible to specify a destination for data, even if
you could physically communicate with that
destination.

Most of modem implementation of name to address
mapping are using dedicate servers, where as
previously it was common for the information to be
replicated on every host. This can be seen in the
Intemet in the change from a flat file (/etc/hosts) to
the distributed database system used for the Domain
Naming System (DNS) where every domain must
have a (possibly shared) server.

At the level above this is the need to have some valid
destination for your data, i.e. a server of some sort. For
example, on a local area network, you would probably
need to access a file or print server, while on the
Intemet today you are more likely to want to access a
Web or FrP server. Without something for you to
access, there is no point to designing and building a
network.

A final essential part.of a network is the people to
manage and administer it. Without them, no network
would continue to function for very long. As an
example, consider the rapid growth in the Intemet in
Australia, particularly in the domain ".com.au". The
time taken to just keep the DNS entries up to date has
been estimated at one to two man days per week, and
that is with extensive work on automating the process!
Without such human support the domain would
rapidly become unusable, as new sites would not be
reachable and old invalid addresses would become
common.

When I say that the Australian Intemet is going to run
into trouble, it is not because of bandwidth, but rather
because of problems with many of the other areas
related to the network. In particular, the area of
concern is the people involved in managing and
administering the network, many of whom do it on
either a voluntary basis or as a secondary function to
their real job. However, when the time required
exceeds the time available something has to give, and
that will most likely be their support of the network.

Finally and just as important, when you discuss the
network within your organisation, it’s cost and it’s
support do you take into account all the items listed
above or do you just look at the most visible?o;o

February, 1996 23

Advice: Computer Room Archaeology

Advice:

Computer Room
Archaeology
Frank Crawford

Christmas has come and gone, and most people in
the computing industry have taken the chance to have
a holiday. But there is one group within your
organisa~ion that probably didn’t get a holiday and
that is your operations staff.

However, there is a chance that their work was
different to their normal routine. Whereas normally
your operations people have to react to the day to day
issues and demands, this quiet period is a chance to
catch up.

This catching up often takes the form of reorganising
and relocating equipment for either better
maintenance, future growth or just for easier location.
All these activities can often be seen as either trivial or
non-essential especially to those outside of the ..
operations area.

In fact, this "non-essential" work is very important to
the continued successful operations of any installation.
Even more, it can be a very interesting part of
operations work.

In an operational setup that has been established for a
long time, there is a chance to study the history of
computer and networking technology. Because the
installations of new equipment and networks usually
occurs in a "hap-hazard" fashion, which means that
any older cables or equipment gradually get buried. If
the computing centre has a false floor, it becomes
worse, as it is easy to hide the mess where it isn’t
obvious. The study of this "spaghetti" could be
described as "computer room archaeology".

During this down time some interesting things can be
found. For example during a recent chance to
reorganise a computer room, I had a chance to do a bit
of archaeology. The room had a long history going
back to the early 1960’s, although much of it had been
cleaned out in the 1980’s.

Starting at the lowest layer, there were a very large
number of RS232 cables, often running for
considerable distances. Almost all of these were no
longer connected to any equipment. On top of (or
often tangle with) these was a thick ethemet cable,
snaking over the floor, however, this time there were

still a few units connected to it. The RS232 cables were
the prime means of communications in the early 1980’s
for Unix systems, with ethemet beginning to be
widely deployed. However, the type of cables used
were far different to today.

In a layer above this was found thin ethemet coax
cables, in nearly the same quantity as the RS232 cables,
obviously being the modem equivalent. Along with
these were some twisted pair cabling, showing some
of the new technology that is now coming on line. As
well, there was one fibre optics cable, as an example of
things to come.

However, not everything has changed over time.
Within the mix of cables were also IBM channel cables,
which were found at all levels. These seem to indicate
that the IBM architecture follows the old saying "if it
works, don’t change it". One other interesting point
was that even unused channel cables could not be
removed, because they also snaked around the floor,
but were also too tightly bundled with other and could
not be separated from cables currently in use.

Finally; within the mix were also numerous power
cable, power boards and telephone cables, many of
which were unused, showing the continuing need for
these. Again there were some interesting issues in the
power cables, in that previously extension cords and
20 amp plugs were common, today power boards and
10 amp supplies are the norm. One other issue with
power boards, it appears that any new piece of
equipment demands the installation of at least one, if
not more power boards, often daisy chained from
previous boards.

One outcome of this general reorganisation, was an
increase in the reliability and maintainability of the
equipment in use. No longer will it be necessary to
hunt through a number of different connectors, many
of which are not connected to anything, to replace
something that has been dislodged.

If the operations staff within your organisation don’t
regularly retrieve cables and reorganise their
computer room, you should ask why. If they claim that
it is hard work for no reward, just describe to them
both the interesting things you can learn, and the
necessity to run an efficient operation. If they still
object why not find a local archaeology student and
see if they are willing to do it?o~¯

24 AUUGN: The Journal of AUUG Inc.

UNIX Tricks & Traps

U N IX Tricks &
Traps
Edited by Janet
Jackson<janet @ dialix.oz, au>
Phone/Fax (09) 295 4753

I still need more submissions for
this column. Take a look at your
startup files and your bin directory
and see if you’ve invented
anything that might interest other
UNIX users. Or write a short article
on how to get the most out of some
piece of UNIX software. And next
time someone asks you a question,
CC the answer to me.-:-

Getting the exit status of any command
in a pipeline
Glenn Huxtable, Functional Software <glenn @ fs. com.au>

After the Bourne shell runs a command, the shell variable $.9 contains the
command’s exit status. If the command was a pipeline, $.9 contains the
exit status of the last program in the pipeline.

The following example shows how to get the exit status of the other
programs in the pipeline. The example is adapted from a backup program
that uses £ind piped to cp±o piped to compress. If £ind or cp±o fails (for
example, because of a disk errormthis happened to one of our customers).
we want to know!

In the Bourne shell command

exec 4>&l

exec is not being used for its normal purpose, which would be to replace
the current process. Instead, it says to redirect file descriptor 4 to the same
place as file descriptor I (standard output) from now on.
#!/bin/sh

this script works by writing out the exit status of each component of
a pipeline as a variable assignment and later "eval"ing the variable
assignments to set the actual variables.
to do this requires a good deal of messing about with file
descriptors, mostly to do with preserving the scripts STDOUT while
internally abusing STDOUT for passing the variable assignments
out of the pipeline.

Glenn Huxtable (glenn@fs.com.au) Functional Software

Dir=$1

FD 0, 1 and 2 are STDIN, STDOUT and STDERR as usual
redirect echo xxxx_status to FD 3 as STDOUT is used for pipe
COMMAND="(find $Dir -mount -print; echo find_status=kS? >&3) \

I(cpio -ocB -Hodc; echo cpio status=kS? >&3) \
(compress; echo compress_st~tus=\$? >&3)"

what was sent to FD 3 needs to go to STDOUT so back-ticks substitution can
catch it and so the real STDOUT has to be sent somewhere else (FD 4)
we want to use this script as a filter, so FD 4 has to go to the script’s
STDOUT

make FD 4 go to the same place as STDOUT (FD i)
exec 4>&l

evaluate the pipeline, returning staius assignments into ’stati’
stati will look something like
find_status=0 cpio_status=0 compress_status=0
or perhaps, if a find error occurred...
find_status=l cpio_status=0 compress_status=0
stati=’eval "($COMMAND >&4) 3>&l"’
wait

initialise known status
find_status=0; cpio_status=0; index_status=0; compress_status=0

evaluate status assignments
eval Sstati

exit_status=0

the variables "find_status" etc are now set.
if [$find_status != 0] ; then

echo "$0: find failed with exit status $find_status"~>&2
exit_status=l

fi

if [$cpio_status != 0] ; then
echo "$0: cpio failed with exit status $cpio_status" >&2
exit_status=l

fi

if [$compress_status != 0] ; then
echo "$0: compress failed with exit status $compress_status" >&2
exit_status=l

fi

exit $exit_status

February, 1996 25

20% DISCOUNT TO AUUG MEMBERS
Please send me a copy/copies of the following book-

Panic! System Crash Dump Analysis
ISBN: 0131493868 Bk & Disk $73.95*

*Deduct 20% from listed retail price

CONTACT DETAILS PAYMENT DETAILS

Mr/Mrs/Ms/Dr: .. I~1 Enclosed is a Cheque for $...

First name: ...

Surname: ..

Position: ...

Company: ..

(Payable to ’Prentice Hall Australia Pty Ltd’)

I--] Charge my [---] Bankcard ~ Visa I--]MasterCard

Card Number: ..

Card Expiry Date: ..

Address: ... Signature: ...

City/Suburb: .. TO ORDER

State:.. ~ Fast Phone Service: Liz Guthrie (02) 9907 5648

Postcode: ... ~ Fax: (02) 9905 7934

Telephone:() .. I~ Mail to Prentice Hall Australia,

Fax:() ... 7 Grosvenor Place BROOKVALE NSW 2100

GUARANTEE: If you are not completely satisfied you may return the book for a full refund within 30 days.

Prentice Hall Pty. Ltd.
7 Grosvenor Place, Brookvale NSW 2100.
Tel: (02) 9939 1333 Fax: (02) 9905 7934

A V I A (0 ,M~ ¢ 0 ~ P A N Y

Book Reviews

Book Reviews
Frank Crawford <frank@ansto.gov.au>

Well here we are, into the new year, with many
interesting and informative reviews covering such
topics as software project management, the World-
Wide-Web (multiple times), software porting,
understanding and fixing PCs and crash dumps and
graphical shells. This shows the wide variety covered
by AUUG members interests and needs, and more will
follow in the future.

As many of you have noticed, we currently have lots
of books coming for review. The current practice is to
post a note to the mailing list
auug-books@ans to. gov. au and the newsgroup
aus. org. auug when we have new books available.
Unfortunately; this disadvantages members without
network connections, or on the end of a low speed
link. For people in such a position, either mail, via the
AUUG PO Box, or fax me on (02) 717 9273, with your
contact details and preferences.,:-

The Mythical Man-Month: 20th
Anniversary Edition
by Frederick P. Brooks, Jr.
Addison-Wesley 1995,
322 pages, $42.95
ISBN 0-201-83595-9
Reviewed by Adrian Booth Tandem Computers Pty Ltd
<abcc @ DIALix. oz. au>

The Mythical Man-Month - first published 20 years
ago - was the first influential book on software project
management. What on earth could it possibly have to
tell us today? An awful lot! TMMM comprises 177
pages of distilled experience and common sense from
someone with vast experience in the management of
large software projects.

Depressingly, much of its content is still as applicable
today as it was when it was written; an interesting
statement in itself on how far we haven’t progressed in
our ability to create complex software. The individual
statements in TMMM read like simple common sense

in many cases. This is simply because so many of our
accepted ideas on large software projects derive
directly from TMMM. For example, TMMM saw the
first mention of Brooks’ Law (Adding people to a late
software project makes it later).

This book, however, is not just a reprint of TMMM - it
is about half again as long as the original, with four
new chapters. One of these is a reprint of the author’s
1986 paper, No Silver Bullet, in which he argues that
there is no new programming technique visible in the
next 10 years that will lead to an order of magnitude
improvement in programming productivity. As we
enter the tenth year after the publication of that paper,
it appears that he was right.

Subsequent chap.ters offer a retrospective on No Silver
Bullet, summarise the propositions of the original
TMMM, and finally give a detailed retrospective on
the original TMMM in the context of software
development today. The main lesson to draw from
TMMM - and in particular from No Silver Bullet - is
that software development is a two-stage process -
conceptualisation followed by implementation.

The implementation phase would have to comprise
90% or more of the total effort - and we would be able
to make that phase take zero time (!) - to see any order
of magnitude improvements in productivity from such
fads as object-oriented programming, development
environments, CASE tools and so on. No-one with any
experience with large software projects would argue
that implementation is as significant a component as
the conceptualisation and design required to deliver a
system.

So the only way we are going to see substantial
improvements in software development productivity
is by targetting the specification and design of
software. Today’s software developers remind me of
the person who lost a watch in the street, but looked
for it under the street light "because it was easier to
see" there. It is easier to see (and tackle) the problems
of implementing software, and so that is the area
currently the subject of the most research. But to see
truly revolutionary improvements, we need to tackle
the fundamentals of software conceptualisation,
design and specification. The author discusses several
techniques by which such improvements might be
accomplished in the future.

Whether you program or manage programmers for a
living, I suggest that this book is an absolute must for
you to have read, and that once you have read it you
will want it on your bookshelf permanently! Highly
recommended..:,

February, 1996 27

Book Reviews

World Wide Web Secrets
by Paul J. Perry
IDG Books 1995,
710 pages + CDROM, $79.95
ISBN 1-56884-2t56-5
Reviewed by Andrew Wenn Victoria University of Technology
(Footscray) <awenn @ westgat e. vut. edu.au>

What a wonderful opportunity the opening up of
Internet and the establishment of the World Wide Web
has been to book publishers. Never have I seen so
many books published on a topic in such a short time,
some bad, many average, some good and the
occasional excellent one. Unfortunately; "World Wide
Web Secrets" is not in the excellent category but it is
better than average if you are a beginner in this area. It
is, however, difficult to see what relevance it will have
to the audience of this publication as it has been
written for DOS users and only rarely mentions UNIX
and then the inference is that UNIX is something to be
avoided unless you are technically competent, mad or
both.

The 25 chapters of the book are divided into 4 sections
with a fifth section containing 4 appendices.

Part I contains three chapters that give a brief
introduction to the Web and the Internet and it is here
that we strike the first of the so called secrets that this
book promises to reveal - hence the use of the word
Secret in the title. One such gem is that "it is important
to remember what technology is: anything that makes
something else more efficient" (page 46) something
that I find neither particularly revealing nor agree
with. Unfortunately most of the secrets are of a similar
nature - another one revealed on page 49, is the
meaning of the word acronym. However, the book
should not be denigrated just because of the nature of
the secrets it reveals, just be aware of the level of them
if you consider purchasing.

Part 2 outlines methods of connecting to the WWW
covering a variety of commercial Web access services,
many of which will be of little use to Australian users,
such as America Online, CompuServe and Prodigy.
There are useful chapters on Netiquette and Searching
the Internet, although, I felt the section on searching
would benefit from an in depth discussion of the more
advanced features offered by some search engines
such as the use of regular expressions and full text
searching. Ironically, and perhaps reflecting the
authors true preferences, the chapter discussing
Netscape is longer than the one discussing the use of
the NetCruiser software that is supplied on the
enclosed CD ROM.

To me, Part 3 was pretty much a waste consisting as it
does of 100 pages of screen shots of web sites, mainly
american, from organisations of various types -
government, computer related business, other
business and so on. A few examples of home pages
would have sufficed to give readers a feel for the type
of information available not 100 pages!

Part 4, entitled Publishing on the World Wide Web, has
a chapter on setting up the Web server software
supplied with the book (Windows HTTPD), a chapter
discussing the type of hardware needed, then it
launches into HTML. Whilst the first chapter provides
some discussion of the basics of HTML, I have seen
better presentations elsewhere and you should note
that it does not cover Version 3.0 or the Netscape
extensions to HTML. Another chapter covers HTML
Forms - again at a very elementary level and does not
mention the problem of case sensitivity with form
methods. I mention this in particular because it is one
problem that I struck when I first started using forms
and can be very difficult to track down. A further
chapter talks about design guidelines for home pages
providing some useful hints for beginners but I felt
some attention could have been paid to the various
graphics formats available for displaying images and
their pros and cons. The section on maintenance of
home pages is woefully short considering how much
attention has to be paid to ensure validity of links and
keeping information up to date. Another chapter
provides some ideas for various types of home page
layouts and discusses the HTML templates that are
provided on the CD. These are fairly elementary but
should enable a tyro to get started.

The penultimate chapter is on commercial uses of the
Web and security considerations and gives a brief
outline of Netscape’s SSL and the W3 Consortium’s
SHTTP security developments. The final chapter in
this section gives a very technology driven view of the
Web’s future really only providing the author with a
chance to do some crystal ball gazing adding nothing
to the actual content of the book.

As mentioned previously four appendices are
contained in Part 5. The first of these provides
information about the software on the CD - mainly a
discussion of the menu options - and is for some
inexplicable reason completely devoid of screen shots
thus making it hard for anyone using the software to
relate to the on-screen appearance of the products. The
second is a fairly short list of U.S. based resources
(magazines and vendors). A four page HTML quick
reference comprises the third appendix and a fairly
simplified glossary the fourth.

28 AUUGN: The Journal of AUUG Inc,

Book Reviews

The index is quite long and detailed (Australia rates
one mention!) the editor having seen fit to index even
such things as the.Netscape accelerator keys. There are
a number of typos in the text especially in some of the
URL’s, which tends to detract from the overall feel of
the text - none however present major problems.

The CD ROM contains a variety of software, all PC
based, some of which is limited to use in North
America. Since this is a journal specifically for UNIX
users I see no point in reviewing the contents of the
CD here.

If you are new to the World Wide Web and the Internet
and a dedicated DOS user then this book may suit
you. The style of writing did not appeal to me but then
each to his/her own. Many of the secrets revealed are
fairly trivial and I would question the use of the word
secret in the title. It does provide a reasonable
introduction for the beginner but I feel that to many
people it would soon outlive its usefulness. Definitely
a browse-before-you buy text.°:°

"IRQ, DMA and I/O"
(resolving and preventing PC system
conflicts)
by Jim Aspinwall
MIS Press 1995,
268 pages + Diskette, $49.95
ISBN 1-55828-456-7
Reviewed by Dave Horsfall <dave @ fgh.oz.au>

This is the book I wished I’d had a few weeks back,
when I experienced my first tiardware conflict (my
Unix box had been perfectly stable, until I added an
Ethernet card that had ideas of its own); note that I
have next to no experience with MS-DOS and its ilk, so
the book will be reviewed in that context.

It is written in a somewhat breezy style, and it gathers
together information that is usually scattered far and
wide, such as a complete listing of the preferred
addresses used by various hardware. Did you know,
that many Ethemet cards use 32 bytes for memory
addresses, instead of the "normal" four? Well, I didn’t

The early history of PCs is explained, showing us why
things are the way they are, and the "Plug and Play"
("PnP") specification receives a fair coverage. No
doubt this is old hat to DOS people, but in the

meantime the rest of us still wonder why something
that is so fundamentally broken could be so successful
(the author himself admits that the PC was .designed
by and for engineers). Common causes of conflict are
covered, and there are many hints for DOS-oids (but of
little use to Eunuchs).

Naturally; DOS, Windows, NT, and OS/2 receive
coverage, but the only mention of Unix occurs in this
howler on page 106: "We’ve had access to the Unix
operating system for years. Unix is very powerful and
works on more types of computers than any other
operating system, but it is also very costly and
complex to implement and use. There are many very
attractive and effective graphical user interfaces for
Unix, but they; tOO, are costly and complex. Even
though Unix is almost universal across various
systems, it has never been designed, packaged, or
supported for use by the general public. Yet we’ve
wanted to be able to use something with the high-
performance, multitasking, interconnection features of
an operating system like Unix." Even though the book
was published in 1995, plainly the author has never
heard of "costly" Linux, FreeBSD, or X ...

A 90mm floppy disk is included with the book,
containing both "QAInfo" (a hardware configuration
system) and "What’s in that Box" (a cute animated
tutorial). I had trouble with QAInfo; it hung regularly
(yes, I tried the hints), and it did not see the Western
Digital network card, so some more work is needed
here. The installation instructions for "What’s in that
Box" need to be looked at, as it said to remove the self-
extracting file without mentioning running it first...

The book could have benefitted from some further
proof-reading; for example, on page 23 we see modem
commands "AT13" and "AT17" (instead of "ATI3" and
"ATI7" respectively), and on page 226 the myth is
perpetuated that a DX4/100 is a clock-quadrupled
chip (it’s not; it’s a tripled 33MHz or a doubled 50MHz
chip; Intel must have used a Pentium to assign those
numbers).

Did I find it useful? Certainly, but with reservations (I
wasn’t looking for errors; they just leapt out at me).
Would I buy it? Dunno; the list price is US$24.95,
which given the stranglehold on the Australian market
by the publishing cartel, it could end up.as anything
here, and I certainly would not be happy paying
AU$50 for a book with errors and software that
doesn’t work. Would I recommend it? Yes, but with
reservations.’:.

February, 1996 29

Book Reviews

PANIC!
Unix System Crash Dump Analysis
by Chris Drake and Kimberly Brown
SunSoft Press, Prentice Hall 1995,
492 pages, Soft Cover with CD-ROM.
ISBN 0-13-149386-8
Reviewed by David Denton ANSTO <dtd@ansto.gov.au>

Ever got the message "Segmentation fault (core
dumped)" ? Was your very next command "rm core"?
Ever wondered what was in those "core" files? Even
worse, have you ever had a Unix system actually
"Panic:" on you and felt powerless to do something
about it?

If so, then this is a book for you. I my own case, I had
just installed a new Sun Server and was preparing for
the worst (Which did not eventuate I’m happy to
report).

The text deals with how to proceed when a UNIX
System, specifically a SUN system running SUNOS
4.1.x or Solaris 2.x, goes belly up. A semi tutorial
approach is used with the initial chapters presenting
issues such as: How to identify when a system has
crashed, the difference between a panic and a hang,
how to use savecore and how to generate a savecore, a
wonderful introduction into how to crash your own
system with appropriate warnings about "not doing
this at home kids" and how to carry out basic problem
determination after an initial crash.

The next couple of chapters cover the basics of how to
drive some of the Unix debugging tools. The main tool
of interest is adb. Other debuggers are briefly
reviewed but the main emphasis is on adb. Having
mastered the basic commands of adb we proceed to
what the book refers to (quite correctly) as "the gory
details". This includes advanced commands and
macros, the macro chapters are used to identify and
explore some of the structures that are manipulated
within the kernel address space in the course of
debugging. These chapters form part #1 of the book.

During this discussion some of the more interesting
areas of the kernel are discussed and you feel yourself
being drawn toward the real purpose of the book i.e.
crash dump analysis.

Unfortunately, just at the point where you think you
will be diving into a crashed Solaris kernel you take a
major detour into part #2 of the book which entails:
Assembly Language, SPARC architecture, the
SUNOS/Solaris operating systems and SPARC
hardware. This is necessary to understand the various
case studies which round out the book.

The case studies form part #3 of the book and are the
whole reason for this text. The authors take a look at
some example problems in the style of a tutorial. The
background detail found earlier now comes into its
own as we delve into network problems, kernel logic
errors, I/O problems and hardware faults.

The book comes with a CD-ROM containing useful
programs and data. I did not have a change to
investigate this but it looks like it could be of
considerable interest.

This book is very readable, considering the dryness of
the subject matter, with the authors providing plenty
of tips on when it would be a good idea to have a cup
of coffee. The introductory material provides a good
starting point for anyone interested in the insides of
SUNOS/Solaris and the actual dump analysis may
prove invaluable when one encounters a system that is
not behaving the way you would like. o~o

Porting UNIX Software
by Greg Lehey
O’Reilly and Associates 1995
ISBN 1-56592-126-7
Reviewed by Glenn Huxtable Functional Software
<glenn @ fs.com.au>

The book is subtitled ’From Download to Debug’ and
it’s not kidding. It deals in great depth with everything
you might want to know about unpacking, patching,
compiling, installing, testing and debugging Unix
software - and then some.

One thing this book does not deal with is writing
portable software. The author does not specifically
discuss design issues for portability, that’s a whole
other topic. This book focuses more on UNIX features
affecting portability; and how to map from one feature
to another when crossing platforms.

When I first chose to review a draft copy, I was actively
involved in porting my company’s product and was
looking for helpful information on ’portability’, and
probably more specifically good design principles for
portability.

My initial reaction to the first few chapters was that
this book was about compiling software from the net,
which I’ve been doing that for years. I put the book
down. Coincidentally my focus was shifted from
porting to support for a time.

30 AUUGN: The Journal of AUUG Inc.

Book Reviews

A while later a real copy of the book arrived in the
mail, prompting me to have another go. Don’t do what
I did - don’t put the book down and write it off as just
a book about building free software from the net. It
starts out talking about software from the net, but
that’s only because the net is the most common source
of UNIX application source code. There’s more to this
book than that.

The book is an in-depth introduction and reference for
the newcomer who wants to understand all the in’s
and out’s of how to build UNIX software on already
ported platforms, and is a great reference for the more
experienced user wishing to actually port the software
to new platforms.

At 516 pages, it’s not a light read, however it can easily
be tackled in chunks. The book is in three sections,
each section comprising a number of mostly self
contained chapters that the reader can browse, or
return to as a reference at any time.

The first section ’The Story of a Port’ deals with just
about everything you need to know about extracting,
configuring, building, testing and debugging source
archives. By then end of this section, there isn’t much
that an inexperienced reader won’t know about the
process of taking a source archive from the net, or off a
CD-ROM, and processing it right the way through to a
compiled and tested program ready to be used.

A sample of topics covered includes, archive file
formats, common compression programs, identifying
archive types, unpacking them, updating them with
’patch’, configuring sources, controlling the build with
make, understanding the compiler and compiler
errors and warnings, common compiler problems,
documentation, documentation formats and
conventions, testing and debugging with gdb, truss
and friends and finall~ advice on how to report
modifications so that you don’t have to repeat the hard
bits next time you download the same software.

The second section, the ’UNIX Flavor Guide’ is a
comprehensive study of the differences between UNIX
systems that effect portability of programs, including
cqmparisons of SCO, SVR3, SVR4, BSD, SunOS and
IRIX functionality.

Starting with the obvious hardware dependencies of
data types, pointer size, byte order and data alignment
the author then moves into general kernel
dependencies, such as IPC mechanisms, sockets,
FIFO’s, process groups, setuid functionality and the
many flavours of ’wait’.

The chapter on ’Signals’ is a most detailed coverage of
SVR4, BSD and POSIX signals and signal handlers.

The next chapter is ’File Systems’ which describes the
common file system types and most, if not all, system
calls and function libraries to do with accessing and
manipulating file-systems.

This is followed by ’Terminal Drivers’. a comparison of
Old, SVR4 and BSD terminal drivers, ioctl’s, termio
and termios.

’Timekeeping’ looks at the problems of daylight
savings times and international time formats, as well
as time keeping and manipulation functions.

Just when you head is about to burst, the author dips
into ’Header Files’ for a brief look ANSI and POSIX
header files, and some of the problems of different
platforms using different include files, or different
structures for the same effect.

If that isn’t enough, the chapter on ’Function Libraries’
is a fairly complete reference on just about every C
function librar~ and their various differences across
platforms.

The second section wraps up with chapters devoted to
comparisons of K&R and ANSI C compilers, and
object file formats, assembler and linker conventions.

The third section consists of appendices of
comparative UNIX data types, C compiler options and
assemble directives and options.

Throughout, the author compares features available
under SCO, SVR3, SVR4, BSD, IRIX with occasional
reference to Linux. The second section in particular
contains numerous tables showing which functionality
is available under which system. This is a serious text
for anyone wishing to port software to new platforms
and an invaluable reference for comparative
functionality.

This book is certainly up to the expected standard of
O’Reilly books. The author clearly knows his stuff, not
only providing a wealth of factual information, but
also many years of experience and tips to the reader.

’Porting UNIX Software’ has certainly earned it’s place
on my bookshelf. Highly recommended if you’re into
portability across UNIX platforms.

February, 1996 31

Book Reviews

Desktop KornShell Graphical
Programming
by J. Stephen Pendergrast, Jr.
Addison-Wesley Professional Computing Series 1995,
840 pages, $56.95
ISBN 0-201-63375-2
Reviewed by Jamie Honan <jhonan @mpx. com.au>

This book describes dtksh (Desktop KornShell), an
amalgam of KornShell and tools for the X Window
system, specifically Motif, the Xlib and Xt (X Toolkit).
The author has added another X layer, he calls it XU
for X Utilities, in order to make using this tool simpler!

The author’s rational for such a beast is simple: it has"
been blessed by a standards body. "... a new initiative
swept across the Unix industry - the Common Open
Software Environment (COSE)". Part of this set of
specifications is called Common Desktop Environment
or CDE. Dtksh was specified as part of CDE as the
scripting language to use for writing X Window
system applications.

Rival scripting systems are dismissed early on. Tcl/Tk
is a rival toolkit that, unlike dtksh, is free and freely
available (not to worr)6 every Unix vendor will have
dtksh. Use Linux or Net/Free BSD? Bad luck!). Tcl/Tk
gets a nod for its "simplicity" and the fact its source is
"of high quality and freely available". Tcl/Tk doesn’t
include the kitchen sink, "so problems arise when
using Tcl/Tk for industrial strength programming in
the CDE environment".

Taking the author at his word, is this a useful book if
you had to use dtksh? The answer is yes, with some
qualifications.

You’d have to be an experienced C or shell
programmer, and the second section of the book goes
heavily into Xlib and Xt calls that really would require
prior experience or access to other material.

The KornShell is explained quite well for
programmers who are capable in other shell
languages.

The first section of the book deals very well with Motif
basics, although again some shielding is done by the
author through his XU layer. Traditional Motif ’
concepts, widgets and gadgets are explained in detail.

The author develops two applications, a cheque book
system and a stock chart display application, the full
source for these takes 124 pages.

There are a number of chapters that concentrate on
common programming tasks, rather than explain

underlying widgets or concepts. Examples include -
feedback during long processes, message catalogues.

The chapter on using the interface to C is not really
fully fleshed out. For a very large or specialised
application, the use of C code will be necessary either
for tweaking performance at a weak spot or for
specialised interface (if not both).

In summary, if you’re forced to use dtksh you’ll
probably need this book. If you’re looking for an easy
way to do GUI programming under X, you might find
Tcl/Tk and some of the myriad extensions (for
example Tcl/Motif if you have to / want to use Motif)
will be more useful in both the short and long terms.o~o

The Student’s Guide to Doing
Research on the Internet
by Dave and Mary Campbell
Addison Wesley 1995,
349 pages, $26.95
ISBN 0-201-48916-3
Reviewed by Jon Wright Guru Software Services
<jon @ UNS. com. a u>

The title of this book attracted immediate attention,
probably as a result of the media hype surrounding
the Internet combined with an obviously acceptable
excuse for spending additional time (and money).
Colleagues that saw the book arrive in the post wanted
to borrow it immediately. Unfortunately, the title is
probably the best thing about the book.

Approximately half of the book is a simple
introduction to the various common internet tools.
There are specific sections on: FFP, Gopher, Veronica,
Jughead, WAIS, and the WWW.

Generic introductory chapters also discuss telnet and
how to get an Intemet connection. The authors assume
that there are basically three choices for a connection:
an educational link, a freenet service or a commercial
provider (Delphi, NetCom are mentioned but not AOL
or CompuServe). This is a very US-centric view of the
Internet and it really ignores the huge non-American
audience. Australian readers after a connection should
replace the first eight chapters with an alternative such
as "OzInternet" (Goodheart & Crawford).

The remainder of the book consists of chapters
covering various study areas including:

32 AUUGN: The Journal of AUUG Inc,

Book Reviews

T̄he Humanities

M̄anagement

S̄chool Resources

C̄omputer Science
Ēducation and General Reference

¯Engineering
¯Geography and Travel
¯History and Political Science
¯Legal Resources
¯Literature

M̄edicine and Health

T̄he Sciences and Mathematics

Each of these chapters contains a series of paragraphs
with a URL for the specific resource and then a few
sentences describing the content at that site. The
problem with this approach is that the information can
become dated very quickly. The authors tackle this
problem by suggesting that updates are available from

the Addison-Wesley web page. (This assumes that you
have managed to get a connection). Readers
interested in a broader range of topics would probably
find "The Whole Internet" (Krol) more useful.

Overall, I was very disappointed in the book. It did not
convince me to change from my standard
recommendation of Internet books for the expert or
beginner: "OzInternet" and the "Internet Resource
Guide". Overall I cannot see a real place for this book.
It is not detailed enough for novices and it is too
quickly outdated for experts. In conclusion, I cannot
really recommend this book to an Australian
audience.°:°

February, 1996 33

WAUG news: From the Western Front

WAUG news:
From the
Western Front
Edited by Tom Hallam
<thallam @geol. uwa. edu. au>

.Meeting information
WAUG meets at the Freeway Hotel, 55 Mill Point
Road, South Perth. We meet at 6:15pm on the third
Wednesday of each month.

Our meetings are advertised in the Diary column of
the Computers section of Tuesday’s West Australian..

If you need further information about the next
meeting, please contact Mark or one of the committee.

SPEAKERS ARE NEEDED

especially ones who can actually commit to giving a
talk on a certain date! So if you can give a talk, or
know someone who can, please let us know. Mark (our
meeting organiser) cannot produce them out of thin
air.

WAUG Email Aliases, Newsgroups
and Web Page
WAUG has the following mail aliases on
uniwa, uwa. edu. au:

waug-membership - for membership enquiries
waug-chair - our Chairperson
waug-moet:ings - our meeting organiser
waug-secre~:ary - our Secretary
waug-newslet:t:~r - for newsletter contributions or
enquiries
waug - for general correspondence (will be read by the
Secretary, as a paper letter would be).

So, for example, you may send general
correspondence to waugOuniwa, uwa. edu. au.

Check us out on the World Wide Web at:
http : //www. auug. org. au/auug/waug/waug, html

(thanks Canberra AUUG).

Also see the newsgroups wa.waug and aus.org.auug
for announcements and discussion.

Committee Contact Details
Office-bearers:

C̄hair" Adrian Booth 321 9111
booth_adrian@tandem, com

¯ Treasurer: Patrick Ko 483 8111
pko@DIALix, oz. au

¯ Secretary: Major 357 5076
maj or@yarrow, wt. com. au

Ordinary committee members:
M̄ark Baker (Meeting Organiser) 491 6081
baker@telecomwa, oz. au

¯ David Buck
dbuck@ncc, telecomwa, oz o au

¯Luigi Cantoni 474 3700
Iui@DIALix. oz. au

¯ Don Griffiths 351 7691
gri f fith@cs, cur tin. edu. au

¯ Tom Hallam 380 2665 (AUUGN Sub-editor)
thal lam@geol, uwa. edu. au

¯Glenn Huxtable 328 8288
glenn@fs, com. au

¯ Janet Jackson 272 5061
j anet@DIALix, oz. au

J̄ames Patton (Meeting Reporter)
j rp@mrwa, wa. gov. au

A publicity officer has not yet been appointed. Please
volunteer. (Adrian is acting in the interim, but don’t
you think he has enough to do already?)

For Systems Administrators:
Local SAGE-AU Meetings
The WA Regional Group of the Systems
Administrators Guild of Australia (SAGE-AU) meets
on the first Tuesday of each month at 6pm, in room G3
at the Alexander Library (Note the change).

For more information, please contact any of the
following:

r̄egional group chair,
Janet Jackson <janet@DIALix.oz.au>,
(09) 272 5061

¯meeting organiser
Mike Horton <mikandfi@DIALix.oz.au>,
(09) 479 8424

¯Tom Hallam <thallam@geol.uwa.edu.au>,
(09) 380 2665

For information about SAGE-AU in general, you may
also look at
ftp://ftp.sage-au.org.au/pub/SAOE-AUand
http://www.sage-au.org.au:8080/.~

34 AUUGN: The Journal of AUUG Inc.

AUUG Canberra news:

Canberra chapter
John Barlow, 019 935477,
<cauug. secre tary @ auug. org. au>
Secretary, Canberra Chapter of AUUG Inc.

March Monthly Meeting
Topic: An Introduction to Java
Presenter: Jan Newmarch
When: 7:30 pm for 8:00 pm, Tuesday, 12th March 1996
Where: Manning Clark Theatre 5 ANU Campus

Jan Newmarch will be introducing us to Java. All
going well, this will include real, live demos (there you
go, I’ve put a curse on it already .. -)

Java is a language that enables portable program
performing some very neat graphic work and some
actually useful functionality. It is rumoured to be the
next wave that will wash over the Internet. It should
firmly embed the World Wide Web into many
organisations (and homes).

The INTERNET Project
If you are an AUUG member in the Canberra Chapter
you can get email and news access to the Intemet, and
there is no cost (so long as you remain a financial
member). This is provided by a dialup service which
has been recently updated and has a direct IP
connection to the Internet. Full IP access to the Internet
can be obtained at extra cost ($90 for 300 hours,
approximately). If you are interested in this service,
please contact John Barlow (mobile: 019 935477) to
have a chat about it.

We have a Linux box and a FreeBSD box available via
the same dialup service, so if you want to examine
these great (free, full source) UNIX implementations,
here is a prime opportunity ! Existing users who wish
to use these boxes need to email
linux@canb.auug.org.au or freebsd@canb.auug.org.au
to have an account setup.

Meetings organiser wanted:
If you want a specific topic discussed at a future
meeting, or want a specific UNIX presentation made,
please contact John Barlow (contact details at the end
of this message).

AUUG Canberra news: Canberra chapter

Volunteers needed:
We need people to volunteer to handle some of the
workload. You may have noticed that some of the
committee have become very scarce recently, and we
need extra people to help out. One example of a job
looking for a good home is somebody to look after
membership details for the dialup project, so people
don’t get their accounts accidentally suspended ...

Coming Events:
March 12
Java talk, 7:30 pm Manning Clarke Theatre 5 ANU

April 9
General meeting TBA

May 14
General meeting TBA

June 11
Annual General Meeting

February, 1996 35

Rules of AUUG Incorporated

Rules of AU U G
Incorporated

As ammended at 1 July 1995

Name

The incorporated association shall be known as the
AUUG Incorporated, abbreviated hereinafter to
AUUG.

Definitions
(1) In these rules, unless otherwise stated: "he",
"him" and "his" shall also be construed to mean
"she", "her" and "her" respectively; "The Act" means
the Associations Incorporation Act 1981 (Vic);
"Financial year" means the period from 1 June to 31
May; "General Committee Member" shall mean a
general member of the Management Committee;
"mail" shall imply the transmission of information
in writtenor printed form, first-class pre-paid, via
the general post or public or private courier
service; "unfinancial member" shall mean any
member whose most recent term of membership
has expired and who has not yet paid the
subscription for the next twelve month period;
"voting member" shall mean any member entitled
to cast a vote.

(2) In these Rules, a reference to the secretary of the
AUUG is a reference: (a) where a person holds
office under these Rules as Secretary of the AUUG,
to that person; and (b) in any other case to the
Public Officer of the AUUG.

(3) Words or expressions in these rules shall be
interpreted in accordance with, and subject to, the
Act as in force from time to time.

(4) If any doubt arises as to the proper construction
or meaningof any clauses in these Rules, the
decision of the Management Committee thereon
shall be final and conclusive provided such
decision be reduced to writing and recorded in the
minutes of a meeting of the Management
Committee.

Aims
The aims for which the AUUG is established are to
promote knowledge and understanding of Open
Systems including but not restricted to the UNIX
system, networking, graphics, user interfaces and
programming and development environments, and
related standards.

For the furtherance of these aims and to achieve its
purposes, the AUUG may carry out any or all of the
following activities: conduct technical meetings,
conferences, discussion groups, panels, lectures
and other types of meeting; prepare and distribute
a newsletter and other publications; collect
software and distribute said software to its
members for their use; verify licenses of members
for the purposes of administering the services of
the AUUG; subscribe to or cooperate with or
affiliate with or amalgamate with other
associations formed elsewhere with similar aims;
accumulate assets; and establish and promote other
activities not included in the above list consistent
with its aims for the benefit of its members.

Eligibility for membership
4 Any individual or organisation who subscribes to

the aims of the association, and who agrees to be
bound by its rules and regulations and who has
notbeen previously expelled from the association
shall be eligible to join the AUUG.

5 An application for membership shall be in writing
on the form approved by the Management
Committee and shall provide such information as
shall from time to time be prescribed by the
Management Committee.

(1) Membership shall become current from the date
on which a valid membership application
accompanied by payment of the appropriate
entrance fee plus annual membership subscription
is received by the Secretary. The initial membership
period will extend from this date until the first
renewal date (June 30 or December 31) no less than
twelve months from the beginning of the
membership period.

(2) Upon completion of the initial membership
period and any subsequent periods, membership
may be renewed for a further period of twelve
months by payment of an additional annual
membership subscription.

(1) There shall be four classes of members:
Ordinary members, Institutional members, Student
members and Honorary Life Members.

(2) Any natural person who is eligible to be a
member may become an Ordinary Member.

(3) Any person or organisation who is eligible to be
a member may become an Institutional Member.

(4) Any full-time student who is eligible to be a
member may become a Student Member.

(5) Any person who is an Ordinary Member of at
least five years standing and who has rendered
special services to the AUUG may be elected via a
ballot of the members as an Honorary Life member.

36 AUUGN: The Journal of AUUG Inc.

Rules of AUUG Incorporated

(6) If before the first day of May the Secretary
receives a petition from at least twenty voting
members requesting the election of a member of
the AUUG to the position of Honorary Life
Member, then.he shall arrange a ballot of the
membership on this question to be conducted in
conjunction with the annual election of Officers
and General Committee Members.

All Ordinary, Institutional and Honorary Life
Members whose membership is current shall be
entitled to cast a vote.

Membership subscriptions and fees
The Management Committee shall determine
before the commencement of each financial year a
scale of fees for entrance to the AUUG, and for
annual subscriptions for each class of members to
be applied during that financial year.

Register of members
10 (1) The Secretary shall keep and maintain a register

of members in which shall be entered the full name
and address of each member and the register shall
be available for inspection by members at the
address of the Public Officer.

(2) Nothingin the previous subsection shall entitle
any member to make a copy of the register of
members, except with the permission of the
Management Committee, and on such terms and
conditions as the Management Committee shall
from time to time determine.

Termination of membership
11 (1) A member may resign his membership at any

time by giving notice in writing to the Secretary. No
member who resigns shall have any claim for a
refund of subscriptions paid.

(2) A member who has been unfinancial for more
than two calendar months shall be deemed to have
resigned his membership, and shall no longer be
entitled to any privileges enjoyed by members.

(3) Former members who have resigned will be
entitled to rejoin the AUUG on the same basis as
new members joining the AUUG.

Expulsion of members
12 Upon receipt of a petition so requesting from

twenty or more members, or half the membership,
whichever is less, the Management Committee
shall call upon any member to explain any alleged
misconduct, and the Management Committee shall
have power to suspend or expel any member who
in its opinion has either been guilty of misconduct

or has acted prejudicially to the interests of the
AUUG or who has wilfully infringed any of the
Rules of the AUUG.

General meetings
13

14

15

The Annual General Meeting shall be held within
the second half of each calendar year. The date and
general location of each Annual General Meeting
shall be determined at the preceding Annual
GeneralMeeting but either the date or location or
both may be changed by the Management
Committee if it proves impossible or highly
inconvenient to meet at the location previously
selected or on the date previously selected.

An ordinary general meeting of the AUUG shall be
called by the. Management Committee in
conjunction with any technical meeting or
conference or other function where attendance by a
quarter or more of the votingmembers is expected
by the Management Committee.

(1) Written notice of the time and place for each
meeting and its agenda shall be mailed to each
voting member of the AUUG at least four weeks
before the date of the meeting.

(2) Business conducted at such meetings shall be
confined to matters included in the written agenda,
reports from Officers, and resolutions instructing
the Management Committee to conduct a formal
ballot of the membership on matters of substance.
Such resolutions shall not be binding on the
Management Committee unless the meeting was
attended by at least twenty voting members, or half
the membership, whichever is less, and the
resolution was supported by at least three-quarters
of the members voting.

(3) All voting members shall be entitled to cast one
vote.

16

(4) Any voting member may award his proxy to
another voting member for the period of a single
General meeting providing he so notifies the
Secretary in writing at least 24 hours before the
appointed time of commencement of the meeting.

(1) Upon receipt of a petition so requesting from
twenty or more members, or half the membership,
whichever is less, the Secretary shall call an
Extraordinary General meeting of the AUUG for a
date no later than two calendar months after
receipt of the petition.

(2) The business of the meeting shall be confined to
matters described in the petition and to other
matters specifically provided for in these rules and
recorded in the written agenda sent to all members
by mail at least four weeks before the date set for
the meeting.

February, 1996 37

Rules of AUUG Incorporated

17

18

(3) If the Management Committee does not cause a
aspecial general meeting to be held within two
months after the date on which the petition is sent
to the addressof the Secretary, the members
presenting the petition or any of them, may
convene a special general meeting to be held not
later than four months after the date of that
petition.

(4) A special general meeting convened by
members in pursuance of these rules shall be
convened in the same manner as nearly as possible
as that inwhich those meetings are convened by the
Management Committee and all reasonable
expensesincurred in convening the meetingshall be
refunded by the AUUG to the persons incurring
the expenses.

(1) For each general meeting, the quorum shall be
fifty members pers6nally present and entitled to
vote.

(2) If within an hour after the appointed time for
the commencement of a general meeting, a quorum
is not present, the meeting if convened upon the
requisition of members shall be dissolved.

(3) In other cases the meeting shall be deferred to a
place and time determined by the Management
Committee. If that meeting is to be at the same
location on the following day then notice of the
meeting may be given by posting a notice at the
location specifying the time of the meeting and the
business to be conducted no less than four hours
before the time of the meeting. In any other case
notice shall be given as for any other General
Meeting.

At all general meetings of the AUUG the Chair
shall be taken by the President, or in his absence,
the Vice President, or in his absence by a member
elected by the meeting.

Officers
19The Officers of the AUUG shall be: the President;

the Vice-President; the Secretary; the Treasurer; the
Returning Officer; and the Assistant Returning
Officer.

Management committee
20(1) The management and control of the business

andgeneral affairs of the AUUG shall be vested in a
Management Committee consisting of nine elected
members and the Immediate Past President.

(2) The elected members of the Management
Committee are the President, the Vice-President,
the Secretary, the Treasurer, and five General
Committee Members.

(3) The position of Immediate Past President shall
be held by the person who held the position of
President at the end of the previous term of office,
providing they have not been elected to any other
position and agree to accept this position.
Otherwise, the position of Immediate Past
President remains vacant for the entire term of
office.

22

Elections
21(1) The election of Officers and General Committee

Members shall be by a postal ballot held annually..

(2) Nominations for each position shall bereceived
by the Secretary up until the fourteenth day of
April each year. Each nomination must be in
writing,must name the position or positions
sought, must be signed by at least three voting
members, and must be countersigned by the
nominated member who must be a financial voting
member of the AUUG.

(3) Where only one valid nominationis received for
a particular position by the close of nominations,
the nominee shall be declared elected forthwith,
and no ballot for that position shall be held.

(4) Any position for which no nomination is
received, or which remains unfilled after the
election hasbeen conducted, shall be considered as
a vacancy on the Management Committee, and
handled as specified in these rules.

(5) On or before the first day of May, the Secretary
shall advise the Returning Officer of all valid
nominations received, and if a ballot is required
shall advise him of a date no later than the fifteenth
day of May for the ballot for all contested positions,
and shall provide him with a list of voting
members.

(6) While any Ordinary Member may be nominated
to more than one office or position, no person shall
be electedto more than one position. Ballots shall be
determined in the following order: for President,
for Vice-President, for Secretary, for Treasurer, for
General Committee Members, for Returning
Officer, and lastly for Assistant Returning Officer.

(7) All voting members shall beentitled to cast one
vote.

The term of office for all Officers, General
Committee Members and the Immediate Past
President shall be for one year, from July I to June
30.

38 AUUGN: The Journal of AUUG Inc.

Rules of AUUG Incorporated

Vacancies on the management
committee
23(1) The position of any General Committee Member

shall be vacated if the member fails to attend any
Management Committee meeting without
furnishing a satisfactory explanation as to the cause
of his absence, and if the Management Committee
resolves that his office be vacated, or if the member
ceases to be a member of the AUUG

(2) Should the office of President be vacant, the Vice
President shall become President, and the office of
Vice President shall become vacant instead. If for
this reason, or for any other, at any time any of the
other principal Officers (Vice President, Secretary
or Treasurer) be unable to continue in office for any
reason, then the Management Committee shall
appoint one of their number to the vacant office.

(3) Should the position of Immediate Past President
become vacant, it remains vacant for the remainder
of the term of office.
(4) Should a vacancy occur among the other
Officers, or among the General members of the
Management Committee, then the Management
Committee shall appoint an Ordinary Member of
the AUUG to fill the vacancy.

(5) Should a vacancy occur as the result of the
creation of a new position, the vacancy shall be
filled as specified in these rules.

(6) The Management Committee shall make the
approval of such appointments an order of
business for the next General Meeting of the AUUG
if any such meeting will be held before the next
election of Officers and General Committee
Members.

Management committee meetings
24 (!) The Management Committee shall meet

formally at least twice per year.

(2) Notification of time, place and agenda for each
meeting shall be made in writing to each member
of the Committee by the Secretary at least four
weeks in advance.

(3) All members of the AUUG are entitled to be
present at such meetings, and may speak when
invited by the Chairman, but only members of the
Management Committee may vote.

25 At meetings of the Management Committee the
President shall take the chair, or in his absence, the
Vice President, or in his absence a member of the
Management Committee elected by the meeting.

26 The quorum for such meeting shall be five. If a
quorum is not present at the nominated time for
the start of the meeting, the commencement of the

meeting may be delayed for up to one hour, and if
at that time a quorum is still not present the
meeting shall be dissolved.

27 Resolutions of the committee shall require a simple
majority of the members present and voting. The
chairman shall have a casting vote in the event of a
tie.

Distribution of income
28The income and property of the AUUG however

derived shall be applied solely towards the aims
and purposes of the AUUG as set out in these
Rules, and no portion thereof shall be paid or
transferred directly or indirectly by way of
dividend to any member of the AUUG at any time.

29 The AUUG shall not appoint a person who is a
member of the Management Committee to any
office in the gift of the association to the holder of
which there is payable any remuneration by way of
salary; fees or allowances.

30 Notwithstanding the previous section the AUUG
maycompensate the reasonable expenses actually
incurred by any member in the conduct of the
business of theAUUG under the direction of the
Management Committee.

Chapters
31(1) Ten or more members of the AUUG may

petition the Management Committee to form a
chapter of the AUUG.

(2) General rules for the organisation, operation,
obligationsand privileges of chapters shall be as
resolved by the Management Committee or the
membership as a whole from time to time.

(3) Each chapter shall appoint a chapter committee
consisting of at least a Chapter Chairman and a
Secretary / Treasurer.

(4) The chapter committee may convene meetings
consistent with the aims of the AUUG, but may not
enter into any financial commitments on behalf of
or in the name of the AUUG except with the
written approval of the Management Committee.

Affiliation or amalgamation with
other organisations
32The Management Committee may at any time seek

or discuss the possibility of affiliation or
amalgamation with any other organisation whose
aims are similar to or compatible with those of the
AUUG. No agreement for affiliation or
amalgamation may be finalised until the matter has
received the assent of three- quarters of the
members voting in a postal ballot.

February, 1996 39

Rules of AUUG Incorporated

Dissolution of the AUUG
33(1) Upon receipt of a petition requesting the

dissolution of the AUUG from twenty or more
members, or half the membership, whichever is
less, the Secretary shall arrange for the question to
be put to the membership by ballot no later than
one month after the date that he receives the
petition.

(2) If three-quarters of the members voting agree,
the AUUG shall be dissolved.

(3) If upon the dissolution of the AUUG there
remains after satisfaction of all its debts and
liabilities any property whatsoever, the same shall
not be paid to or distributed among the members
orChapters if any; but shall be given or transferred
to some public educational institution, or other
institution to be determined at .or before the time of
dissolution by resolution of the membership.

Changes to the rules
34 Changes to these Rules may be initiated at the

request of a General meeting, or by the
Management Committee. All proposed changes
must be approved by a three-quarters majority of
the votes received in a postal ballot of the members
before having effect.

Rights of members
35 (1) Each member shall be entitled to attend all

meetings of theAUUG, including meetings of the
Management Committee, provided any prescribed
attendance fee is paid.

(2) Each member shall be sent a copy of the
association’s newsletter.

(3) Each member entitled to vote in a ballot shall be
sent notice in writing of all ballots and copies in
writing of the annual reports of the Secretary and
Treasurer.

The Secretary
36 (1) The Secretary shall furnish to the Returning

Officer a complete list of all voting members
wheneverthis is required for the conduct of a ballot.

(2) The Secretary shall keep or cause to be kept full
and correct minutes of all resolutions and
proceedings at General meetings and Management
Committee meetings of the AUUG.

(3) The Secretary shall conduct correspondence on
behalf of the AUUG.

(4) The Secretary shall, during his last month of
office, prepare a written report on the state of the
affairs of the AUUG for distribution to the
membership.

The Treasurer
37(1) The Treasurer shall keep or cause to be kept

correct accounts and books and records showing
the financial affairs of the AUUG.

(2) The Treasurer shall notify the President and
Secretary in writing of the usual location of said
accounts, books and records whenever this location
is changed.

(3) The Treasurer shall receive allfees and
subscriptions and all other monies on account of
the AUUG and provide receipts for the same. The
Treasurer shall deposit all monies received into a
bank account maintained by the AUUG.

(4) The Treasurer shall receive accounts for
payment for services rendered to the AUUG, and
as directed by the Management Committee arrange
for payment from the AUUG’s account.

(5) The Treasurer shall, during his last month of
office, prepare or cause to be prepared a written
report on the financial affairs of the AUUG for
distribution to the membership.

(6) The accounts and books referred to in sub-
clause (1) shall be available for inspection by
members.

Funds
38

39

The funds of the AUUG shall be derived from
entrance fees, annual subscriptions, donations and
such other sources as the Management Committee
determines.

(1) Signing Officers for the AUUG’s accounts shall
be the President, the Vice President, the Secretary;
the Treasurer and one other General Committee
Member chosen by the Management Committee.

(2) All cheques, drafts, and other orders for
payment of money out of the funds of the AUUG, if
for less than a limit established by the Management
Committee, may be signed by only one Signing
Officer.

(3) For other amounts, each such instrument must
be signed by at least two Signing Officers.

Seal
40(1) The Common Seal of the AUUG shall be kept in

the custody of the Secretary.

40 AUUGN: The Journal of AUUG Inc.

(2) The Common Seal shall not be affixed to any
instrument except by authority of the Management
Committee and the affixing of the Common Seal
shall be attested by the signatures either of two
members of theManagementCommittee or of one
member of the Management Committee and the
Public Officer of the AUUG.

Execution of Contracts
41The Management Committee, except as otherwise

provided in theseRules,may prospectively or
retroactively authorise any Officer or member of
the AUUG to enter into any contract or execute
andsatisfy any instrument, and any such authority
may be general or confined to specific instances,
except that any contract whose dollar value
exceeds an amount predetermined by the
Management Committee must be specifically
authorised in advance by the Management
Committee.

Voting
42 (1) All voting by the members with respect to the

election of Officers and General Committee
Members, with respect to the election of Honorary

Rules of AUUG Incorporated

Life Members, with respect to changes to these
Rules, and all other substantive matters shall be
conducted by postal ballot.

(2) Every voting member of record as of the date of
entry of a ballot into the mails shall be entitled to
vote in the ballot.

(3) On all questions to be put to a ballot, the
Secretary shall designate a date for the ballot to be
placed in the mails, and the due date shall be four
weeks after that date.

(4) The Returning Officer shall nominate the
address to which voters shall return completed
ballot papers by mail.

(5) A ballot will not be counted if it is received after
the due date or if the ballot paper does not comply
with the instructions printed on it.

(6) The ballots will be received by the Returning
Officer, and counted by him and the Assistant
Returning Officer.
(7) The Returning Officer shall report the result of
the ballot in writing to the Secretary no later than
two weeks after the due date.

(8) The formal procedures of voting shall be
determined from time to time by the Management
Committee.

February, !996 41

AUUGN Volume 16 Index Book Reviews (Sorted by author)

AUUGN Volume 16 Index
Book Reviews
(Sorted by author)
Compiled by Stephen Prince <S.Prince@clcs.com.au>

Author "l]tle Reviewer ISS,

<unknown> SCO Open Desktop / SCO Open Server - Tony Beresford 2
Graphical Environment Administrator’s Guide

Ables, Robert King The Keys to Successful UNIX System Frank Crawford 4
Management

Angell, David and The Intemet Business Companion Giles Lean 3
Brent Heslop

Chapman, Brent and Internet Security Firewalls Warren Tomey 5
Elizabeth Zwicky

Cline, Marshall P. and C++ FAQs Greg Bond 3
Greg A. Lomow

Comer, Douglas E. The Internet Book Craig Macbride 1

Comer, Douglas E. and Intemetworking with TCP/IP Volume II: Design, 2
David L. Stevens Implementation, and Internals (Second Edition)

Corrigan, Peter and ORACLE Performance Tuning Mark White 2
Mark Curry

Curry; David Systems Programming for UNIX Michael Haldey 5

Dowd, Kevin High Performance Computing Jagoda Crawford 2

DuBois, Paul Using csh & tcsh Work Faster, Type Less 4

Ebbs, Geoff and The Australian Internet Book Phil McCrea 4
Jeremy Horey

Flanigan, David Motif Tools David J. Hughes 1

Frisch, Aeleen Essential System Administration - 2nd Edition David Baldwin 6

Garfinkel, Simson PGP: Pretty Good Privacy Lawson Hanson 1

Goodheart, Berney and OzIntemet: A guide to connecting to the IntemetJon Wright 5
Frank Craw ford m Australia

Goodheart, Bemy and The Magic Garden Explained Solutions ManualAdrian Booth 5
James Cox

Hu, Wei OSF Distributed Computing Environment: DCE Michael Paddon 4
Security Programming

Hunt, Craig Networking Personal Computers with TCP/IP Craig Macbride 4

Johnson, Eric and Advanced X Window Applications Programming,Michael Haldey 3
Kevin Reichard Second Edition

42 AUUGN: The Journal of AUUG Inc.

AUUGN Volume 16 Index Book Reviews (Sorted by author)

Kirch, Olaf The Linux Network Administrator’s Guide David Conran 1

Kurani, Bharat Applied UNIX Programming Volume 1 Greg Black 3

Libes, Don Exploring Expect Janet Jackson 2

Libes, Don Exploring Expect Jon Wright 4

Liu, Cricket, Jerry Peek, Managing Internet Information Services Lawrie Brown 3
Russ Jones, Bryan Buus, and
Adrian Nye

Loukides, Mike Programming with GNU Alex Kowalenko 6

Montgomery; John The Underground Guide to UNIX: Slightly AskewWayne Bell 3
Advice from a UNIX Guru

Mui, Linda and Valarie X User Tools Andrew Wenn 1
Quercia

Nemeth, Evi, Garth Snyder, UNIX System Administration Handbook, SecondFrank Crawford 3
Scott Seebass, and Edition
Trent R. Hein

Neou, Vivian Internet CD David J. Hughes 1

Neumann, Peter G. Computer Related Risks Adrian Booth 1

Newham, Cameron and Leaming the Bash Shell Kate Lance 5
Bill Rosenblatt

R.Cheswick, William and Firewalls and Intemet Security: Repelling the WilyDanny Yee
Steven M. Bellovin Hacker

Radin, David Building a Successful Software Business Zoltan Somogyi 1

Saius, Peter H. A Quarter Century of UNIX Danny Yee 1

Salus, Peter H. Casting the Net: From ARPANET to INTERNET Michael Usher 5
and Beyond...

Till, Dave Teach Yourself PERL in 21 Days J. Wright 5

Walsh, Norman Making TeX Work Jagoda Crawford 6

Welsh, Matt and Running Linux Ian Crankanthorp 6
Lar Kaufman

February, 1996 43

AUUGN Volume 16 Index Reports (Sorted by author)

AUUGN Volume 16 Index

Reports (Sorted by author)
Compiled by Stephen Prince <&Prince @clcs.com.au>

Author Title Issue Page Month

<unknown> Canberra Chapter 2 25-26 April

Barlow, John Canberra Chapter 6 29 December

Davids, Enno AUUG Inc - Victorian Chapter 1 35-36 February

Hallam, Tom From the Western Front 6 26-28 December

Jackson, Janet From the Western Front 5 34 October

Jackson, Janet From the Western Front 4 26-28 August

Jackson, Janet From the Western Front 3 17-18 June

Jackson, Janet From the Western Front 2 25 April

Jackson, Janet From the Western Front 1 35 February

Patton, James WAAUG Meeting reports 5 35-37 October

White, Mark Qld. Chapter Report 5 38 October

White, Mark Queensland Chapter Update 4 28-29 August

White, Mark Queensland Chapter: Summer Technical Conference2 26 April

44 AUUGN: The Journal of AUUG Inc.

AUUGN Volume 16 Index Papers (sorted by title)

AUUGN Volume 16 Index

Papers (sorted by title)
Compiled by Stephen Prince <S. Prince @ clcs.com, au>

Paddon, Michael, "APWWW/AUUG ’95 - The
Presidents View," AUUGN, vol. 16, no. 5, pp. 11-12,
AUUG Inc., Melbourne, VIC; October 1995.

Jackson, Janet, "Attention to detail!,"
AUUGN, vol. 16, no. 6, pp. 17-21, AUUG Inc.,
Melbourne, VIC, December 1995.

Crawford, Frank, "AUUG95-APWWW95 wrapup,"
AUUGN, vol. 16, no. 5, p. 16,21, AUUG Inc.,
Melbourne, VIC, October 1995.

Ching, Keith Lewis, Kathy; "AUUG Conference
Report," AUUGN, vol. 16, no. 2, pp. 16-21, AUUG Inc.,
Melbourne, VIC, April 1995. **** Reprint from
AUUGN v9n5 ****

Bishop, Jeremy; "Behind the Web at http://
www.auug.org.au," AUUGN, vol. 16, no. 3, pp. 7-11,
AUUG Inc., Melbourne, VIC, June 1995.

Sheehan, Kevin, "A Better Way to Access Files -
Mapping," AUUGN, vol. 16, no. 3, pp. 19-20,
AUUG Inc., Melbourne, VIC, June 1995.

Maltby, Chris, "The Cryptography Debate in
Australia," AUUGN, vol. 16, no. 5, p. 18, AUUG Inc.,
Melbourne, VIC, October 1995.

Maltby; Chris, "Death of the Net?,"
AUUGN, vol. 16, no. 1, p. 23, AUUG Inc.,
Melbourne, VIC, February 1995.

Crawford, Frank, "The Desktop of the Future,"
AUUGN, vol. 16, no. 4, pp. 19-21, AUUG Inc.,
Melbourne, VIC, August 1995.

Honan, Jamie, "Economics," AUUGN, vol. 16, no. 4,
p. 24, 29, AUUG Inc., Melbourne, VIC, August 1995.

Tune, Andrew, "Feedback (mmap0),"
AUUGN, vol. 16, no. 4, p. 13, AUUG Inc.,
Melbourne, VIC, August 1995.

Crawford, Frank, "Firewalls,"
AUUGN, vol. 16, no. 4, pp. 23-24, AUUG Inc.,
Melbourne, VIC, August 1995.

Long, Tim, "Formatting C," AUUGN, vol. 16, no. 1,
pp. 43-55, AUUG Inc., Melbourne, VIC, February 1995.
**** Reprint from AUUGN v4nl ****

Paddon, Michael, "A Free Word Processor for UNIX,"
AUUGN, vol. 16, no. 6, pp. 5-7, AUUG Inc.,
Melbourne, VIC, December 1995.

Saarelainen, Markku J., "Information Security System
responsibilities, structure and development,"
AUUGN, vol. 16, no. 6, pp. 8-9, AUUG Inc.,
Melbourne, VIC, Decemeber 1995.

Honan, Jamie, "Information Services," AUUGN, vol.
16, no. 4, pp. 21-22, AUUG Inc., Melbourne, VIC,
August 1995.

McCrea, Phil, "Internet-based Electronic Commerce
will give us ’eye-level’ access to world markets,"
AUUGN, vol. 16, no. 4, p. 11,15, AUUG Inc.,
Melbourne, VIC, August 1995.

Crawford, Frank, "The Internet - will your kids know
more than you?," AUUGN, vol. 16, no. 2, p. 11,
AUUG Inc., Melbourne, VIC, April 1995.

Bell, Gorden, "Internet 3.0 Envisioned," AUUGN, vol.
16, no. 4, p. 19, AUUG Inc., Melbourne, VIC,
August 1995.

Booth, Adrian, "Interview: John Lions," AUUGN, vol.
16, no. 5, p. 15, 18, AUUG Inc., Melbourne, VIC,
October 1995.

Crawford, Frank, "Interview: Tim O’Reilly at
AUUG’95," AUUGN, vol. 16, no. 5, p. 13, AUUG Inc.,
Melbourne, VIC, October 1995.

Honan, Jamie, "Long Live Text," AUUGN, vol. 16, no.
4, pp. 22-23, AUUG Inc., Melbourne, VIC, August
1995.

McCrea, Phil, ;’Microsoft Network,"
AUUGN, vol. 16, no. 6, pp. 11-12, AUUG Inc.,
Melbourne, VIC, December 1995.

Purdue, David, "Netscape Break-in,"
AUUGN, vol. 16, no. 5, p. 19, AUUG Inc., Melbourne,
VIC, October 1995.

Huxtable, Glenn, "One System Administrator’s
Stor~" AUUGN, vol. 16, no. 6, pp. 10-11, AUUG Inc.,
Melbourne, VIC, December 1995.

Hanson, Lawson, "OOPS and GUh Object Oriented
Programming Systems and Graphical User
Interfaces," AUUGN, vol. 16, no. 6, pp. 9-10,
AUUG Inc., Melbourne, VIC, December 1995.

McCrae, Phil, "Open Systems and Open Networks,"
AUUGN, vol. 16, no. 2, p. 23, AUUG Inc.,
Melbourne, VIC, April 1995.

February, 1996 45

AUUGN Volume 16 Index Papers (sorted by title)

McCrae, Phil, "The Operating System they use in
Heaven "AUUGN, vol. 16, no. 1, p. 6, AUUG Inc.,
Melbourne, VIC, February 1995.

Crawford, Frank, "Overview of the AUUG95
Network," AUUGN, vol. 16, no. 5, p. 17, AUUG Inc.,
Melbourne, VIC, October 1995.

Vanderstock, Andrew, "Productivity through better
user interface design," AUUGN, vol. 16, no. 2, p. 12,
AUUG Inc., Melbourne, VIC, April 1995.

Taylor, Ian, "Professions On-Line: Australian IT
consultants on the Web," AUUGN, vol. 16, no. 4,
pp. 14-15, AUUG Inc., Melbourne, VIC, August 1995.

Main, Alan, "Sex, Lies and Policy Manuals -
Developing and effective policy and procedures
manual for Open Systems," AUUGN, vol. 16, no. 2,
pp. 13-18, AUUG Inc., Melbourne, VIC, April 1995.

Honan, Jamie, "Software Minimalism,"
AUUGN, vol. 16, no. 5, p. 20, AUUG Inc.,
Melbourne, VIC, October 1995.

Honan, Jamie, "Sun, Tk + Java,"
AUUGN, vol. 16, no. 4, pp. 15-16, AUUG Inc.,
Melboume, VIC, August 1995.

McCrea, Phil, "Thoughts of an Outgoing President,"
AUUG Inc., vol. 16, no. 4, pp. 12-13, AUUG Inc.,
Melbourne, VIC, August 1995.

Purdue, David, "Transparency and Performance
Issues in Sun RPC," AUUGN, vol. 16, no. 1, pp. 17-21,
AUUG Inc., Melboume, VIC, February 1995.

McRae, Andrew, "UNIX. Live free or die!,"
AUUGN, vol. 16, no. 2, p. 19, AUUG Inc., Melboume,
VIC, April 1995.

Jackson, Janet, "UNIX Tricks & Traps,"
AUUGN, vol. 16, no. 2, pp. 21-22, AUUG Inc.,
Melbourne, VIC, April 1995.

How to stir up a storm with email forwarding
Remembering options, executing your prompt
Finding out with Telnet

Jackson, Janet, "UNIX Tricks & Traps,"
AUUGN, vol. 16, no. 4, pp. 25-26, AUUG Inc.,
Melbourne, VIC, August 1995.

Greg’s Perl Iota

Jackson, Janet, "UNIX Tricks & Traps,"
AUUGN, vol. 16, no. 6, pp. 14-15, AUUG Inc.,
Melbourne, VIC, December 1995.

Tracing System Calls
Trap: interpreters can’t be scripts

Jackson, Janet, "UNIX Tricks & Traps,"
AUUGN, vol. 16, no. 3, pp. 11-16, AUUG Inc.,
Melbourne, VIC, June 1995.

Some Simple Directory Tools
A Program to Debug and Edit Pipelines
Centering text, with and without vi

Jackson, Janet, "UNIX Tricks & Traps,"
AUUGN, vol. 16, no. 5, pp. 22-24, AUUG Inc.,
Melbourne, VIC, October 1995.

Correspondence about "grepdir"
Timing out a process from the shell

Leonard, David, "UNIX Tricks & Traps - Consistent
Binary Support for Multiple Architectures Across a
Common Filesystem," AUUGN, vol. 16, no. 1, p. 22,
AUUG Inc., Melbourne, VIC, February 1995.

Crawford, Frank, "Who is doing your System
Administration?," AUUGN, vol. 16, no. 4, p. 17,
AUUG Inc., Melboume, VIC, August 1995.

Chubb, Lucy, "Yuletide Packets,"
AUUGN, vol. 16, no. 1, p. 34, AUUG Inc., Melbourne,
VIC, February 1995.

46 AUUGN: The Journal of AUUG Inc.

AUUG Institutional Members

AUUG
Institutional
Members
as at 22/01/96

AAII
ACAY Network Computing Pty.Ltd.
Actrol Parts
Adept Software
Alcatel Australia
Amalgamated Television Services
Amdahl Australia
Andersen Consulting
ANI Manufacturing Group
Ansett Australia
ANSTO
Anti-Cancer Council of Victoria
ANZ McCaughan
AT & T GIS
Attorney-General’s Department
Ausnet Services Pty. Ltd.
AUSOM Inc.
AUSTA Electric QId Minerals & Energy Centre
Australian Archives
Australian Bureau of Statistics
Australian Centre for Remote Sensing (ACRES)
Australian Customs Service
Australian Defence Industries Ltd.
Australian Electoral Commission
Australian Film Television and Radio School
Australian Information

Processing Centre Pty. Ltd.
Australian Medical Enterprise
Australian Museum
Australian National Audit Office
Australian National University
Australian Submarine Corporation
Australian Taxation Office
Australian Technology Resources (ACT) Pty. Ltd.
Australian Technology Resources Pty. Ltd.
AWA Defence Industries
B & D Australia
Barwon Water
Bay Technologies Pty Ltd
BHP Information Technology
BHP Information Technology
BHP Minerals Exploration
BHP Research- Melbourne Laboratories
BHP Research- Newcastle Laboratories
Burdett Buckeridge & Young Ltd.
Bureau of Meteorology
Bytecraft Pry, Ltd.
Cape Grim B.A.P,S
Capricorn Coal Management Pty. Ltd.
CelsiusTech Australia
Central Queensland University
Central Sydney Area Health Service

Centre for Open Systems Pty, Ltd.
CITEC
Clegg Driscoll Consultants Pty. Ltd.
Coal & Allied Operations
Cognos Pry, Ltd.
Corn Net Solutions
Com Tech Communications
Comcare Australia
Commercial Dynamics
Commercial Industrial

Computer Services Pty. Ltd.
Communica Software Consultants
Composite Buyers Ltd.
Computechnics Pry, Ltd.
Computer Associates
Compuware Asia-Pacific
Continuum Australia
Copper Refineries Pty. Ltd,
Corinthian Engineering Pty. Ltd.
CSC Australia Pty. Ltd.
CSlRO Division of Information Technology
CSIRO Division of Manufacturing Technology
Curtin University of Technology
Cyberdyne Systems Corporation Pty. Ltd.
Cyberscience Corporation Pty. Ltd.
Cybersource Pty. Ltd,
Daedalus Integration Pry. Ltd.
Data General Australia Pty. Ltd.
Datacraft Technologies
Dawn Technologies
DB Bain Group Services Pry. Ltd.
Deakin University
Defence Housing Authority ¯
Defence Service Homes
Department of Communications and the Arts
Department of Conservation

& Natural Resources
Department of Defence
Department of Defence (TC Section)
Department of Education QLD
Department of Family Services &

Aboriginal & Islander Affairs
Department of Gaming & Racing
Department of Lands Housing & Local

Government
Department of the Treasury
Department of Urban Services
Dept. of Industrial Relations Employment

Training & Further Education
DEVETIR
Dialix Internet Services27
Digital Equipment Corp. (Australia) Pty. Ltd.
Dominion Systems Pty. Ltd.
DSTO Lab 73
EASAMS (Australia) Limited
Edith Cowan University
Electricity Trust of South Australia
Electro Optics Pty. Ltd.
Engineering Computer Services Pty. Ltd.
Environmental Resources

Information Network (ERIN)
Deparment of Environment Sport and Territories
Equity Systems Pry. Limited

Ericsson Australia
ESRI Australia Pty. Ltd.
Execom Consulting
Executive Computing Group
FFE/James Hardie Bidg, Serv.
FGH Decision Support Systems Pry. Ltd.
Financial Network Services
First State Computing
Flinders University
Fremantle Port Authority
G.James Australia Pty. Ltd.
GEC Alsthom Information Technology
Genasys II Pty. Ltd.
Great Barrier Reef Marine Park Authority
Haltek Pty. Ltd.
Hamersley Iron Pty. Ltd.
Hannan Group Computer Services
Heath Insurance
Hermes Precisa Australia Pry. Ltd.
Hitachi Data Systems
Honeywell Australia Ltd.
Honeywell Ltd.
Hong Kong Jockey Club Systems

(Australia) Pty. Ltd.
I.P,S Radio & Space Services
IBM Australia Ltd.
Ideas International Pty. Ltd.
Independent Systems Integrators
Informatel Online
Information Technology Consultants
Insurance & Superannuation Commission
Integration Design Pty. Ltd.
Intelligent Network Development
James Cook University
Joint House Department
JTEC Pty. Ltd,
Keays Software
Knowledge Engineering Pty. Ltd.
Laboratory Systems Pty. Ltd.
Labtam Australia Pty. Ltd.
Land Information Centre
Land Titles Office
Leeds & Northrup Australia Pty. Limited
Logica Pty. Ltd,
Lotus Development
Lyons Computer Pty. Ltd.
Macquarie University
Main Roads Western Australia
Mayne Nickless Courier Systems
Mayne Nickless Information Tech. Services
Medical Benefits Funds of Australia Ltd.
Memtec Limited
Mentor Technologies Pty. Ltd.
Mercedes-Benz (Australia) Pty. Ltd.
Message Handling Systems
Metal Trades Industry Association
Mincom Pty. Ltd.
Minenco Pry, Ltd.
Mitsubishi Motors Australia Ltd.
Mitsui Computer Limited
Moldflow Pty. Ltd.
Motorola Communications Australia
Motorola Computer Systems

February, 1996 47

AUUG Institutional Members

Multibase Pry. Ltd,
Multiline BBS
National Library of Australia
National Resource Information Centre
NCOM Services
NEC Australia Pty. Ltd,
Northern Territory Library Service
Novell Pry. Ltd.
NSW Agriculture
NSW Teachers Federation Health Society
Object Design Pty. Ltd.
Object Technology International Pry. Ltd.
Office of the Director of Public Prosecutions
Open Software Associates Ltd.
OPSM
OSIX Pty. Ltd.
Pacific Star Communicatioris
Peter Harding & Associates Pty. Ltd.
Petrosys Pty. Ltd.
Philips PTS
Port of Melbourne Authority
Powerhouse Museum
Primary Industries & Energy
Process Software Solutions Pty. Ltd.
Prospect Electricity
Pyramid Data Centre Systems
Qantek
QLD Department of Transport
Quality By Design Pty, Ltd.
Redland Shire Council
Renison Golfields Consolidated Ltd.
Rinbina Pty. Ltd.
Royal Melbourne Institute of Technology
SCEGGS Redlands Ltd
Sculptor 4GL+SQL

Security Mailing Services
SEQEB Business Systems
Siemens Nixdorf Information Systems Pty, Ltd,
Smallworld Systems (Aust,) Pry. Ltd,
Snowy Mountains Authority
Software Plus (Australia) Pty, Ltd,
South Australian Co-operative Bulk Handling
Specialix Pry, Ltd,
St, Gregory’s Armenian School
St, John of God Hospital
St, Vincent’s Private Hospital
Stallion Technologies Pry, Ltd.
Standards Australia
Stanilite
State Library of Victoria
State Revenue Office
Steelmark Eagle & Globe
Sterling Software
Storage Technology of Australia
Sydney Electricity
Sydney Ports Corporation
Systek Corporation Pty. Ltd.
Systems Development Telecom Australia
TAB Queensland
TAFE NSW Information Systems Division
Tandem Computers
Tattersall Sweep Consultation
Technical Software Services
TechNIX Consulting Group International
Telecom Australia
Telecom Payphone Services
Telstra Applied Technologies
Telstra Research Laboratories
The Far North QLD Electricity Board
The Fulcrum Consulting Group

The Roads & Traffic Authority
The Southport School
The University of Western Australia
Thiess Contractors Pty, Ltd.
Thomas Cook Ltd.
TNT Australia Information Technology
Toshiba International Corporation Pty, Ltd.
Tower Technology Pty. Ltd.
Tradelink Plumbing Supplies Centres
Transport Accident Commission
Triad Software Pty, Ltd.
Unidata Australia
University of Adelaide
University of New South Wales
University of Queensland
University of South Australia
University of Sydney
University of Tasmania
University of Technology Sydney
Vanguard Computer Services Pty. Ltd.
Victoria University of Technology
VME Systems Pty. Ltd.
Walter & Eliza Hall Institute
Water Board
WCS Australia Pty. Ltd.
Wesfarmers Limited
Western Mining Corporation
Westrail
Woodside Offshore Petroleum
Workers’ Compensation Board of QLD
Workstations Plus
XEDOC Software Development Pty. Ltd.
Zircon Systems Pty. Ltd.

48 AUUGN: The Journal of AUUG Inc.

UNIXeAND OPEN SYSTEMS USERS

To apply for AUUG membership, complete this form and return it with payment in Australian Dollars to:
REPLY PAID 66, AUUG MEMBERSHIP SECRETARY,
P.O. BOX 366, KENSINGTON, NSW 2033, AUSTRALIA
Tel: +61 2 361-5994 or 1 800 625 655 ¯ Fax: +61 2 332-4066

Tick this box if you wish your name
withheld from mailing lists made
available to vendors. [~

NOTE: Please do not send purchase orders - perhaps your purchasing department will consider thts form to be an Invoice. Fm’elgn applicants please send a bank draft
drawn on an Australian bank.
’°~‘‘°~°~¯~°~°~°~‘~°~°°’~¯~¯‘’‘~¯~¯’~’~‘~¯~¯¯~’¯~¯~°~°~‘~¯¯~*~°~’~°~°~°~°~*~;~’.~*~°:~°~

INDIVIDUAL OR STUDENT MEMBERSHIP:
I, do hereby apply for:

Renewal/New membership of AUUG
Renewal/New Student membership
International air mail

I~1 $ 90.00
~ $ 25.00 (ple~ complete cert~ica~ion p~ion)
I~! $ 6o.oo

TOTAL REMITTED: AUD$.~

I agree that this membership will be subject to the
rules and by-laws of AUUG as in force from time
to time, and that this membership will run from
time of joining/renewal until the end of the
calendar or financial year.

Signature

Date

LOCAL CHAPTER DESIGNATE:
You can participate in the activities of a local AUUG Chapter. Part of your fee will be given to the chapter to support those activities. By
default a regional chapter will be selected for you. If you would rather nominate a chapter, please specify here

(indicate NONE for no chapter).

iiTo BETTER SERVE You, PLEASE PRINT YOUR CONTACT INFORMATION:

Name/Contact:
Position/Title:

Company:

STUDENT MEMBER CERTIFICATION: (to be completed by a member o/the
academic staff)
I,

(administrator)

(instita’ion)Address:
graduate approximately

Postcode

Tel: BH AH

certify that :~

is a full time student at

and is expected to

(date)

Fax: BH. AH silage

email address:
Over for Institutional Membership Title ~ Date

Please charge $
i~1 Bankcard,
Account number:
Expiry date:
Name on card:
Signature:

to my
Visa, ~ Mastercard

i~i..Chq: bank ~ ...
ii:: a/c #

iioate:
i lnitial:
:

iiDate processed:
iii Membership #¯ : ..

AUUG Inc. as a user group, exists to provide UNIX@ and open systems
users with relevant and practical information, services, and education
through cooperation among users.

To apply for AUUG membership, complete this form and return it with payment in Australian Dollars to:
REPLY PAID 66, AUUG MEMBERSHIP SECRETARY,

UNIXeAND OI:~N SYSTEMS USERS

P.O. BOX 366, KENSINGTON, NSW 2033, AUSTRALIA T’~ck this box if you wish your name
withheld from mailing lists made

Tel: +61 2 361-5994 or 1 800 625 655 ¯ Fax: +61 2 332-4066 av=lab~e to ver~o~s. [~1
NOTE: Please do not =end p~rchase (xder~ - perha~ your purchasing department will consider thb, fom~ to be an Invoice. Fo,’algn appltcan~ please =end ¯ bank
d~awn o~ an Australian bank.

(co~ N~) 1 st Rep.
do hereby apply for: Position/Title
Renewal/New* Inst. membership of AUUG I~1 $350.00 Address
International air mail ~ $120.00

Bus. Tel:TOTAL REMITTED AUD$
e-mail Address(Cheque, money order,, or o’edit c~d)

I/We agree ~= Ihls membership wil be ~ubjec~ to I~e rules and W-laws of AUUG as tn Local Chapter Pref.
~ce from lime to lime, and I~at Ih~ membetr~p wil rm I~om lime of jo~ningh’enawal

I/We unde~land that I~e will receive two copies of Ihe AUUG newdett~, and may ~d
I*o tep~ese~talives Io AUUG ~ored ~,ents =l me~b~ rates, I~h I,~e wil have
only me vote In AUUG dec~:~, and o(her ballots as required.

Signed Date

Bus. Fax:

2nd Rep.
Position/Title
Address

Title Bus. Tel: Bus. Fax:

INSTITUTIONAL MEMBER DETAILS:
To be templed by In~lJtond membecs

e-mail address

¯ Local Chapter Pref.
Following are our specified contacts. The prim .a~y contact holds the full member
votinqrights. The two desiqnated re~ will also be given membership rates to
AUUG activities including chapter adivities. By defau.lt a regional chapter will
be selected for you. If you would rather nominate a chapter, please st:~ecify in
space provided (indicate NONE for no chapter).(P~=,,,~,~d,,~y= ~o~,~ Please charge $.
Primary Contact

Position/Title
Address

Postcode
Bus. Fax:

[~ Bankcard,
Account number:
Expiry date:
Name on card:
Signature:Bus. Tel:

to my
I~1 Visa, I~1 Mastercard

e-mail address

i:.Date: $::
i! lnitial:
i Date processed:
Membership #

AUUG Inc. as a user group, exists to provide UNIX@ and open systems
users with relevant and practical information, services, and education
through cooperation among users.

Notification of
Change

You can help us! If you have changed your mailing address,
phone, title, or.any other contact information, please keep us
updated. Complete the following information and either fax it to
the AUUG Membership Secretary on (02) 332-4066 or post it to:

AUUG Membership Secretary
P.O. Box 366
Kensington, NSW 2033
Australia

(Please allow at least 4 weeks for the change of address to take effect..)

~ The following changes are for my personal details, member #:

UNIX~AND OPEN SYSTEMS USERS

The following changes are for our Institutional Member, primary contact.

The following changes are for our Institutional Member, representative 1.

The following changes are for our Institutional Member, representative 2.

PLEASE PRINT YOUR OLD CONTACT INFORMATION (OR ATTACH k. MAILING LABEL):

~lame/contact:

%sitiorVTitle:

3ompany:

~,cldress:

Iel: BH
--ax: BH

~rnail address:

Postcode

AH

AH

Date:
Initial:
Date processed:
Membership #

PLEASE PRINT YOUR NEW CONTXCT INFORMATION:

Name/Contact:
Position/title:
Company:
Address:

Tel: BH

Fax: BH

emaii address:

Postcode

AH

AH

